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Based on a (almost) fixed hardware/software
platform.

Good for standard production environments.

Unsuitable for research and development
enviroments.

It lacks flexibility.




* We need to support multiple computational
paradigms at the same time?

* We need to deploy transient experimental
clusters?

* We need to deploy multiple development
environment?

* We need to experiment new solutions?



Virtualization is a consitent technology.

Support for Multiple Computational Paradigmes.

Virtual Cluster makes the management of HPC
environments flexible.

The loss of performances can be acceptable
(~5%).

Support for hardware accelerator.
Virtual Clusters can be saved for later use.



* Virtual clusters operations can lead to scalability
problems.

* Managing virtual clusters can be very difficult
with traditional tools.

* Some users still want to run their code on
traditional systemes.



Build Smarter Management Tools:
* Enable dynamic and flexible computational
environments.

* Very different computational approaches can
coexist on the same physical facility:

Map-reduce.
* Standard parallel jobs.
*  Virtual HPC Clusters.
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Virtual cluster are collections of virtual machines

deployed and managed as a single entity (Foster
et al. 2006).

HPC virtual cluster are “atomic” objects

* l.e.,, macro-computing task subdivided between the
VC nodes.

HPC virtual clusters are big objects
* E.g., 128 nodes (3GB disk + 8GB memory) ~ 1.5TB.
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Get: one -> many

S P

save: many -> many
(T ‘

restore: many -> many
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VM Disk images are, as far as the repository is concerned,
WORM (Write Once Read Many) objects.

Get, save and restore are all “simple” I/0 operations:
* only one client writes and writes sequentially;
* when afileis closed is “closed”, no appends
needed;Suitable for applications that have large data sets.

It appears that HDFS (KFS, GFS...) should be ok.



* Distributed File System

designed to run on o o
commodity hardware.

* Suitable for applications that
have large data sets.

* Highly Fault-Tolerant.




S :=# of physical cluster nodes
N := # of virtual cluster nodes
R := block replication
Blocksize := 64MB

* Procedure

* Allocate a cluster with S nodes and install HDFS
* Save reference image in HDFS (from a node NOT in the
cluster)

* Randomly select groups of N=2,4,8,16,32,...,S nodes from
the cluster

* Use dsh for concurrent get, save and restore requests.
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* Flexibility.

* Scalability.

* Support for Multiple Computational
Paradigm:s.

* Encapsulation.
* Reliability and Security.
* High Performances.
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@CRS‘P Architecture

* VIDA:

* Allocate the Virtual Clusters.

— ,———\
| 3|
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* Manages all the Virtual Clusters .. ) . ] (10 (a0 ] III

operati.ons. @ [mp| pej (V|DA pej

* @Gridengine

* Allocate the physical resources.

* Support different computational
environment.

* HDEFS:
* A parallel filesystem.
* HaDeS:

* A physical images deployment tool.



An open source batch-queuing system.

Supports advance reservation.

Supports multiple computational
paradigms.

Integration with Hadoop.



* Traditional tools:

* Virtual Machines Oriented.

* Management operations are carried on using a
polling approach.

* Aren't very reliable.

* VIDA:
* Virtual Cluster Oriented.
* Management based on a heartbeat approach.
* Very reliable.
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* Virtual Cluster Tracker (VCT):

Manages all the clusters operations, T

coordinates the creation of each single

virtual machine, uMT UMT
collect and mantain all the status R s »
. . . VMH | VMH [ ] VMH VMH | VMH [] VMH
informations coming from the VMs on | f

PHY (] PHY
each node. | Pl

STORAGE
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WS CIRSt  VIDA Architecture

* Virtual Machine Tracker (VMT):

* Coordinates the operations on a specific oooover
node, a
* reports the status of the physical resources VMT VMT
available on the host to the VCT, . IR
. . VMH | VMH [[.] VMH VMH | VMH |[] VMH
* creates and manages the virtual machines T |
according to the directives received from the | J L.l Sl
VCT.
* Virtual Machine Handler (VMH): STORAGE

* Control and administer a single virtual
machine.
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Service Interface
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GRS’  Virtual Bubble Quster
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JCRS4 VIDASalability

* Deploy Time vs Virtual
Nodes Number.

* Average Data Transfer vs
Virtual Nodes Number.

e Settings:
— Core number: 132

— Image size: 4.39 GB

— Replication Factor: 3
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A oGEmS< (bndusions

* Virtual Clusters simplify the management of HPC
environments making them more flexible.

* Gridengine+VIDA = A very flexible architecture
for the deployment and management of Virtual
Clusters.

* Gridengine+VIDA+HDFS = A scalable
architecture for the deployment and
management of Virtual Clusters.



Support for encrypted filesystems.

VMs commissioning and decomissioning.
Integration with the Haizea Scheduler.
Release VIDA on Sourceforge.



THANK YOU!
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* Distributed File System

designed to run on o o
commodity hardware.

* Suitable for applications that
have large data sets.

* Highly Fault-Tolerant.
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