

HPC for Biomed Applications The Harvard Orchestra Experience

Marcos Athanasoulis, Dr.PH Director, Information Technology Harvard Medical School

Outline

- About HMS
- Context
- Why Shared Biomed HPC is different
- About Orchestra today and tomorrow
- Why it matters
- Biomed HPC 2010

About the Longwood Medical Area

- 213 Acres, 37,000 employees, 15,000 students
- 21 institutions
- 2.15 million in- and outpatient visits
- Forty-seven percent of all hospital-based outpatient clinical visits, and fifty-one percent of all inpatient admissions in Boston
- Forty-seven percent of all staffed beds in Boston
- 15,016 births in the LMA

HMS Affiliated Research – Longwood

- Four of the top five Independent Hospital recipients of NIH funding nationwide
- Massachusetts was the number two state recipient of National Institutes of Health (NIH) funding
- Boston is ranked as the number one city in the nation for NIH support
- If the LMA were ranked as a city, it would be number three for funding, after New York and before Philadelphia. If the LMA were ranked as a state, it would be number eight, after North Carolina, and before Washington.
- National Institutes of Health (NIH) awards more than doubled for the LMA institutions from \$302 million to \$722 million over the decade between FY 1991 and FY 2001

What makes Biomed HPC Different?

- Larger problem space
 - Whole genome processing
 - Whole 'Ome processing
 - Image Processing
 - Simulations
 - Matlab, R, SAS, etc
 - Everything Else
- Bursty Usage
 - Processing power is not always the bottleneck

Most work is "embarrassingly parallel"

Biomed HPC Differences (cont.)

- Researchers
 - Funding challenges
 - Grant funding limitations and requirements
 - Everyone is a CIO
- Systems Diversity
 - Plethora of small clusters
 - General lack of centralization
 - White boxes to blue genes
- Lack of IT training

About HPC @ HMS

- Today: Orchestra Phase I
 - Modest shared cluster
 - 1000 processor cores
 - 600TB attached NAS storage
 - Interconnect: Gigabit Ethernet
 - Subsidized user contribution model
 - BUT, MOST computing happens under the desk and behind the curtain!

About HPC @ HMS (cont.)

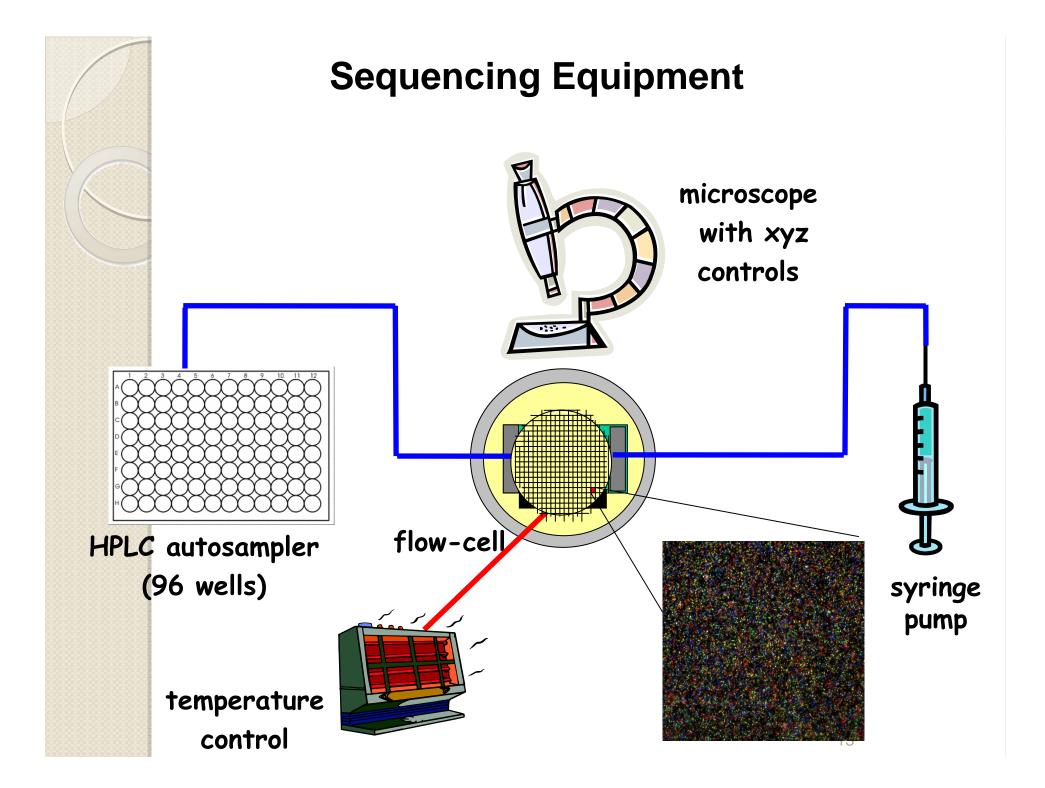
- This Fall: Orchestra Phase II
 - \$3.7 Million NIH S10 ARRA Award
 - Will support 30 existing NIH researchers
 - 6,000K processor cores
 - Petabyte of storage
 - 10g Ethernet and Infiniband
 - High Performance Scratch Space
 - Small, integrated GPU cluster
 - Modest SMP options (24 cores)

Shared Capacity @ HMS

- Critical to the success of the shared infrastructure model
 - ½ the nodes have been contributed because of shared usage models
 - Contributors get guaranteed access to their nodes but others can use them when they were idle
 - NOTE: This approach would fail in many other disciplines
- LSF used for queue management
 - Time limited queues
 - All and shared queues

Storage Needs and Architecture

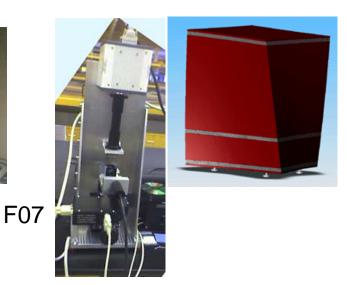
- 70% annual growth in storage with an accelerating growth rate
 - Driven largely by next generation sequence analysis and high resolution microscopy
- Implemented Isilon Storage Arrays
 - 2 600TB clusters mirrored in different facilities
 - 6 weeks of checkpoints (daily for last week)
 - Uses NFS


Challenge: Natural Language Processing

Programmer's File Editor - [050210_1629\MiniDem1.txt] File Edit Ontions Template Execute Macro Window Help	
SOCIAL HISTORY: The patient is married with four grown daughters, Smoker , has wine Smoker .	Rep
PRINCIPAL DIAGNOSIS: LEFT LOWER LOBE PNEUMONIA	
SECONDI SOCIAL HISTORY: The patient is a nonsmoker. No alcentol.	
2. HEI-INT TT ST ST Non-Sm	oker –
SOCIAL HISTORY: Negative for tobacco, alcohol, and Norreganse	ed with
PAST MEDICAL HISTORY: (1) Hip fracture. (2) Bronchiectasis.	
BRIEF RESUME OF HOSPITAL COURSE:	
63 yo woman with COPD, 50 pack-yr tobacco (quit 3 wks ago), Pas	st Smoker
ALLERGIES: (1) Aspirin. (2) Ciprofloxacin. (3) Femicilin.	
SOCIAL HISTORY: The patient lives in rehab, married. Unclear smoking from the admission note	history ???
Prisite comminention. Temperature 97.2, puise 60, respirations 20, blood pressure 160/63, oxygen saturation 95% on room air. HEENT: Normocephalic an	nd atraumatic. Pupi
HOSPITAL COURSE: It was recommended that she receive We also form of Lactobacillus acidomil Hard to pick repopulation of her gut.	o added Lactinax, oral
Chest x-ray revealed hyperinflated longs and evaluated by the	
The patient SH: widow, lives alone, 2 children, no tob/alcohol. Hard to p	ick
Ln 44 Col 1 274 WR Rec Off No Wrap DOS INS NUM	577

Challenge: Whole Omes

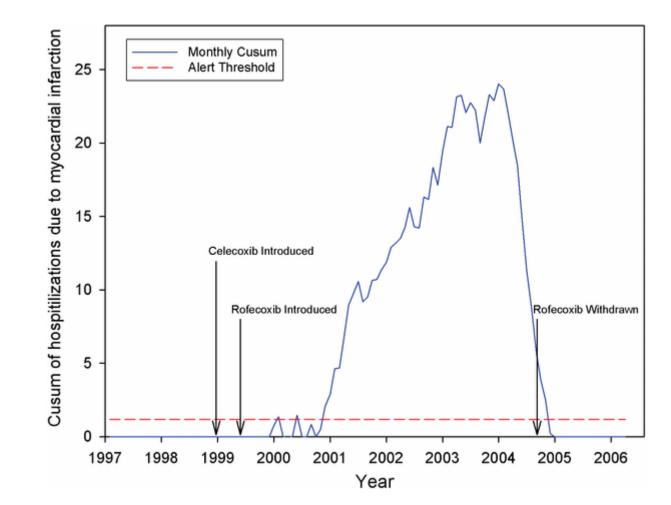
- Current cost 100K
- Working on <\$1,000 whole genome
- High Throughput Instrumentation
 - \$250-\$500 for 500,000 SNP's
 - \$50-100K for good quality phenotyping of 100K++ individuals
 - What about the samples (consented)
 - \$650/patient
 - Dozens a week
 - Wait in clinic: \$450+/patient



2nd-generation sequencing

Harvard-model-F07: \$106K incl. computer. \$14K support. Open-source software, hardware, wetware Reduce reagent volume & per vol cost 100X each.

E07 (Nikon)



Challenge: Everything to Everything

Biomed HPC Leadership Summit

- 150 leaders in biomedical HPC
- Networking, birds of a feather and user polls
- 2010 Summit to convene October 17th
 October 19th in Boston MA
- <u>http://biomedhpc.med.harvard.edu</u>

Thank you

- Questions, comments:
 - marcos@hms.harvard.edu

