Standards-based Peta-scale Systems: Trends, Implementations and Solutions.

Dr. Frank Baetke
HP ISS/SCI Global Technology Programs

HPC Cetraro, June 21st, 2010

HP = HPC Leadership for a Changing World

Accelerating innovation through a converged infrastructure for the HPC data center

Performance

 Leadership performance, capacity and density, first in performance/watt

Efficiency

 Increased datacenter capacity and efficiency, accelerating time to deployment

Agility

 Simplified provisioning and management of scalable pools of standardized HPC resources

Confidence

Industry quality leadership, successful customers, ongoing investments

Purpose-built HPC Servers

PURPOSE DRIVEN SCALE-OUT PRODUCT LINES

Density optimized for the data center

Shared infrastructure for accelerated service delivery

Extreme scale out datacenters with lean management

	DL	BL	SL
Design center	Rack	Blade enclosure in rack	Rack
Design focus	Versatility & value	Integrated & optimized, maximum redundancy	Cost & features optimized for extreme scale out
Application	General purpose	General purpose / private cloud / scale out	Web 2.0 / cloud / scale out
Management	Essential and davanced accelerated service		Home grown management
			Basic management via IPMI/DCMI

The Most Successful Architecture Ever to Enter the TOP500

The Most Successful Architecture Ever to Enterthe TOP500 – the BL-Series (c-Class)

New Performance/Density for HPC: HP ProLiant BL2x220c G6

BL2x220c G6				
Processor	Two 80W or 60W dual- or quad-core Intel Xeon 5500 Series processors per server node*			
Memory	Registered or Unbuffered DDR3 6 DIMM Sockets per server 96GB max per server			
Internal Storage	1 Non-Hot Plug SFF SATA HDD per server			
Networking	2 integrated 1GbE Ethernet ports per server			
Mezzanine Slots	1 PCle Gen2 x8 mezzanine expansion slot per server			
Additional Features	Internal USB 2.0 connector Optional internal SD Card slot (consumes the USB slot)			
Management	ProLiant Onboard Administrator powered by iLO2			
Density	32 server nodes in 10U enclosure			

SL-Series: HP PROLIANT SL6000

Ideal environments

#1 perf/watt
SPECpower_ssj2008
3106*

HP ProLiant SL160z G6 HP ProLiant SL165z G7 HP ProLiant SL170z G6 HP ProLiant SL2x170z G6

Maximum expansion with 18 DIMM slots and up to 2 PCle slots

Maximum expansion with 12-core AMD processors and 24 DIMM slots Maximum storage capacity with up to 6 LFF SATA or SAS hard drives Maximum compute density with two servers per tray (1U)

Ideal Application

HPC database tier

Web memory-cache

HPC database tier Web memory-cache

Ideal Application

Ideal Application

Web Search Web database

Ideal Application

HPC compute intensive Web front end

SPEC®, the SPEC logo and the benchmark name SPECpower_ssj®2008 are registered trademarks of the Standard Performance Evaluation Corporation. The SPEC logo is © 2007 Standard Performance Evaluation Corporation (SPEC), reprinted with permission.

^{*} Based on April 2010 published benchmarks. 12/11/07 SPEC announces the release of SPECpower_ssi2008, the first industry-standard SPEC benchmark that evaluates the power and performance characteristics of volume server class computers. The competitive benchmark results stated herein reflect results published on www.spec.org, See http://www.spec.org/power_ssi2008/results/power_ssi2008.html

Purpose-built **HPC Storage**

Complementary Scalable Storage Solutions for High Performance Computing

X9000 Network Storage System

- Scalable performance and capacity
 - Scalable aggregate bandwidth
 - Scalable metadata, ideal for small files
- Shared datacenter multipurpose storage
 - Linux and Windows clients
 - NFS & CIFS support
 - Ideal for applications in media, FSI, bioinformatics, web/cloud

DDN Storage with Lustre

- Scalable performance and capacity
 - Scalable single-file bandwidth, with multiple writers
 - demanding bandwidth requirements
- Tightly coupled to HPC Linux clusters
- Ideal for parallel applications in traditional HPC

Purpose-built HPC Fabrics

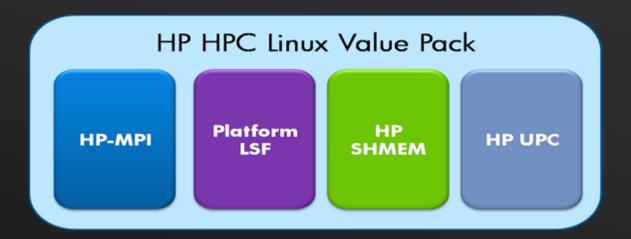
Voltaire IB 4X QDR 36P RAF Managed Switch

What's New:

- Voltaire IB 4X QDR 36-port RAF managed switch with a reversed airflow fan unit enabling rear-to-front cooling
- Designed to support front cabling in clusters based on ProLiant SL6000/6500 servers
- 19" rack mountable chassis, 1U height, configurable with redundant Power Supplies, and Fan Units
- Aggregate data throughput: 2.88 Tb/s (QDR), 1440 Gb/s (DDR) or 720Gb/s (SDR)
- Port-to-port Latency: less than 100 nanoseconds latency
- On-board SM for fabrics up to 648 nodes

HP + 3Com – Leadership from Edge to Data Center Core

HPC Software Infrastructure



Unified Cluster Portfolio

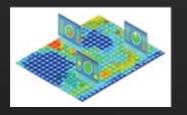
HPC Technical and Enterprise services HPC application, development and cloud software portfolio Advanced and specialty options (Accelerators, Visualization, other) Scalable data management (HP x9000 NSS, Lustre Cluster FS) Cluster management layer **Microsoft Windows** Partner and Open **HP CMU** Source choice **HPC Server 2008** Operating environment and OS extensions Windows Linux **HP cluster platforms** HP ProLiant servers, HP BladeSystem, multiple interconnects **HP Datacenter Products & Services**

A la Carte cluster options for HP Clusters

- Operating systems: RHEL, SLES, or customer-supported community distributions; Microsoft Windows HPC Server 2008
- Cluster Management: HP CMU, or third party, via SLMS or customer installed (e.g., ROCKS, Platform Cluster Manager)
- MPI: HP-MPI, or third party/open source; Windows MPI
- Workload manager: Platform LSF (via SLMS now), Altair PBS Pro (HP SKU), Adaptive Computing Moab (via SLMS)



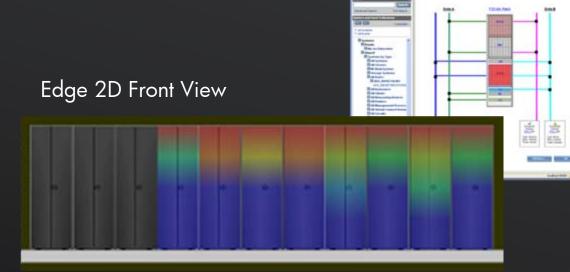
Datacenters -Power and Cooling


Trends at the Data Center: Significantly Improved Efficiencies

HP Data Center Smart Grid

- Environmental Edge V5.1
 - 4D view of DC energy
 - Real-time PUE/DCiE metrics
 - Increase DC capacity by up to 25%
- 20' Performance OptimizedDatacenter*
 - Deploy modular datacenters quickly and efficiently, with a lower cost of entry

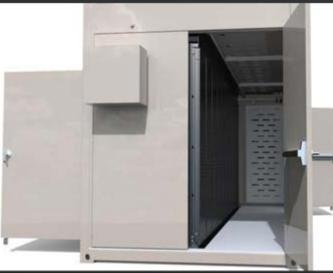
ADAPTIVE AND SCALABLE SOFTWARE FOR HPC Datacenters


Edge Futures

- Integration with Insight Control
- One pane of glass power and cooling visualziation
- True 3D visualization
- Macro Data Center view
- Micro rack level view

And the design of the second o

Edge 3D Visualization


IPM Rack View

Trend? Are Next Generation Data Centers Ugly?

Advantages: Fast Deployment and Time to Operation: Efficient to Build and Rebuild

- Container backed into truck bay on mfg floor
- Racks assembled and then put into containers
- Truck pulls out with fully-configured container to the customer site...

HP POD products and concepts

Currently shipping - 2010

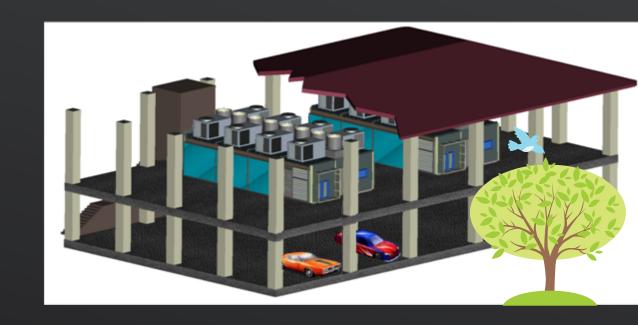
2011

- 22 50U racks 40ft
- 600kW power capacity
- Designed for high density deployments max 34kW per rack
- Flexible for redundant or non-redundant deployments

- 10 50U racks 20ft
- Modular design for better supply chain efficiency
- Flexibility to customize

- EMI shielding
- Designed for portability

How Some Data Centers Will Look Like


- Is arguably better along many dimensions
 - Scalable
 - Economic at small and large scales
 - Benefits of being colocated with other infrastructure

Holistic Data Center Portfolio: The Greenest 3 PFlop/s on the Planet I

Concept Details:

- •Two HP Free Air PODs on platform.
- Minimum Area required is about 18 by 24 meters
- Supports 84 50U Racks
- GPU Assisted Processing
- •Can distribute up to 2MW of power
- PUE of less than 1.1

Holistic Data Center Portfolio: The Greenest 3 PFlop/s on the Planet II

Concept Details:

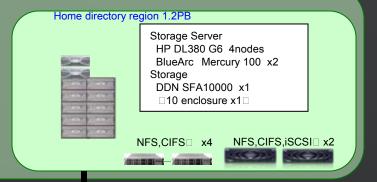
- •Up to 48" clearance in the front and back of every rack
- •42 50U 2800 lb racks
- Up to 8 225A busses for 32kW to every rack
- Make up fans, controlled dampers, evaporative coolers and filters for best year-round PUE

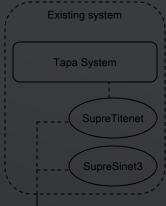
Trends in Efficiency

	5 yrs. ago	2010	2015
PUE	2, 3, Higher	1.1 Great	?
UPS Efficiency (Part of PUE)	94%	98%+	?
Power Supply Efficiency	75%	94%+	?
Fan Power per 2s Node	60+ W	2-10 W (< 1%) (some think 0)	?

Peta-scale Implementation Example: TITECH Tsubame 2.0

TSUBAME 2.0 Overview


- Compute nodes: 2.4PFlops (CPU+GPU)
 - New SL-node >> 1408)thin nodes, each with 2 Westmere-EP and 3 NVIDIA M2050
 - 1347 with 54GB and SSD 60GB, 41 with 96GB and SSD 120GB
 - Suse Linux Enterprise Server or Windows HPC Server
 - DL580 G7 Medium (24) and Fat (10) nodes, with 2 NVIDIA S1070
 - Medium: 128GB plus SSD 120GB x4
 - Fat: 256BG plus SSD 120GB x4
- QDR InfiniBand, full bisection, non-blocking
 - Spine: Voltaire Grid Director 4700 12 x 324port
 - Edge: Voltaire Grid Director 4036 179 x 36 port and 4036E 6 x 34port/10GbE 2 port
- Storage: 5.93PB
 - Lustre file system 5.93PB: DDN SFA 10000 (10/rack, 5 racks) and DL360 G6 (30)
 - Home file system: 1.2PB: DDN SFA 10000 (10/rack, 1 racks), BlueArc Mercury 100 (2) and DL360 G6 (30)
- Press release (Japanese):
 - http://www.gsic.titech.ac.jp/sites/default/files/pdf/TSUBAME/press.pdf



TSUBAME 2.0 System Overview

OSS x20

Interconnect: Full bi-section non-blocking

MDS x10

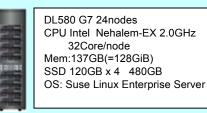
CONTRACTOR OF THE PROPERTY OF THE PARTY OF T

Edge Switch

IB QDR:34port

10GbE: 2port

Compute nodes 2.4PFlops(CPU+GPU)


1408 SL nodes CPU Intel Westmere-EP 2.93GHz Turbo boost 3.196GHz□ 12Core/node Mem: 54GB (1347 nodes) 96GB (41 nodes) GPU NVIDIA M2050 515GFlops,3GPU/node SSD 60GB x 2 120GB (54GB nodes) 120GB x 2 240GB (96GB nodes) OS: Suse Linux Enterprise Server Windows HPC Server

CPU Total: 215.99TFLOPS(Turbo boost 3.196GHz) CPU+GPU: 2391.35TFlops

Memory Total

80.55TB SSD Total □ 173.88TB

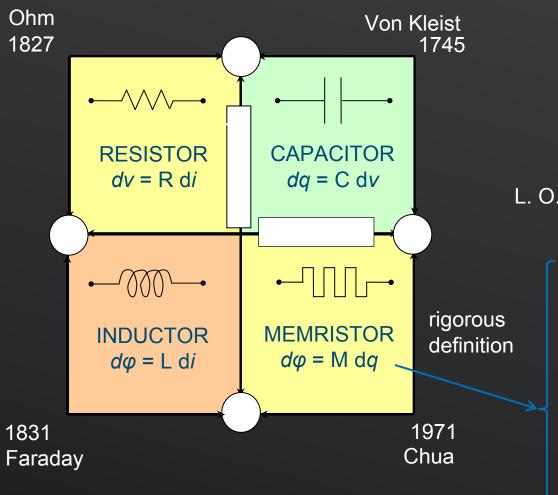
"Med" nodes

CPU Total: 6.14TFLOPS

"Fat" nodes

DL580 G7 10nodes CPU Intel Nehalem-EX 2.0GHz 32Core/node Mem:274GB(=256GiB) □8nodes 549GB(=512GiB) □2nodes SSD 120GB x 4 480GB OS: Suse Linux Enterprise Server

CPU Total: 2.56TFLOPS


PCI -E gen2 x16 x2slot/node GSIC:NVIDIA Tesla S1070GPU

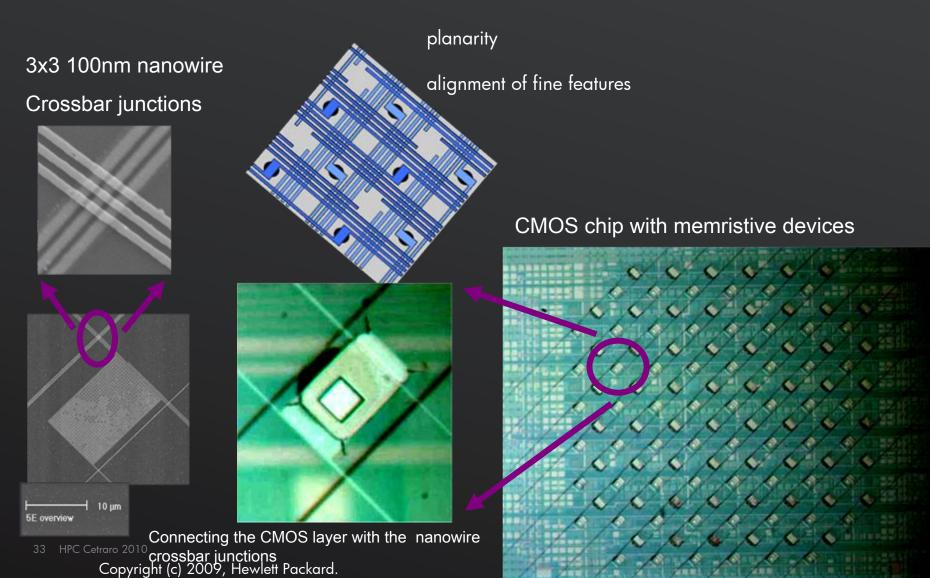
Research

The Prediction of a New Circuit Element: the Memristor

L. O. Chua, IEEE Trans. Circuit Theory **18**, 507 (1971)

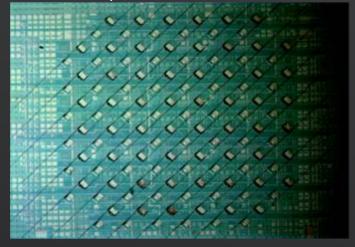
$$v(t) = R[w, i(t)]i(t)$$

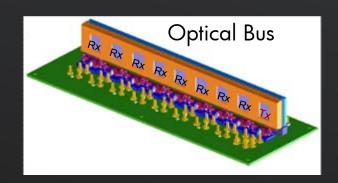
Quasi-static conduction eq.-R depends on state variable w


$$\frac{dw(t)}{dt} = f[w, i(t)]$$

Dynamical equation – Evolution of state in time

First Hybrid CMOS-Memristor Chip


Issues that had to be overcome:



Long-term Trends in HPC: Examples of HP Labs Innovation

- Capacity Memristor (short for memory resistor)
 - Scales to extremely high density (many terabits/sq cm)
 - Non-volatile essentially infinite data retention time
 - Reasonably fast (ns) and low energy (pJ)
- Bandwidth Photonics
 - · High bandwidth, and highly energy efficient
 - Photonic interconnects between systems available now
 - Long term research leading to photonic interconnects within systems and chips

Final Trend: Towards Exascale Systems (Looking at MTBF of minutes...)

Leveraging 3D PCRAM Technologies to Reduce Checkpoint Overhead for Future Exascale Systems

Xiangyu Dong^{†‡}, Naveen Muralimanohar[†], Norm Jouppi[†], Richard Kaufmann[†], Yuan Xie[‡]

†Hewlett-Packard Labs, [‡]Pennsylvania State University

†Email: {xiangyu.dong,naveen.muralimanohar,norm.jouppi,richard.kaufmann}@hp.com

‡Email: {xydong,yuanxie}@cse.psu.edu

ABSTRACT

The scalability of future massively parallel processing (MPP) systems is being severely challenged by high failure rates. Current hard disk drive (HDD) checkpointing results in overhead of 25% or more at the petascale. With a direct correlation between checkpoint frequencies and node counts, novel techniques that can take more frequent checkpoints with minimum overhead are critical to implement a reliable exascale system. In this work, we leverage the upcoming *Phase-Change Random Access Memory* (PCRAM) technology and propose a hybrid local/global checkpointing mechanism.

After a thorough analysis of MPP systems failure rates and fail-

the failure rate growth in future systems.

To tolerate the rising failure rate and reduce its impact on work-load running time, modern MPP systems are equipped with a centralized non-volatile storage system (typically built with arrays of disks) that takes frequent synchronized checkpoints of every node in the system. However, the current approach has many serious limitations. First, the design of using a single centralized medium storing all checkpoints is inherently not scalable; second, as the number of compute nodes increases and the size of applications grow, the performance overhead of conventional techniques can reach an unacceptable level. A recent study by Oldfield *et al.* [3] showed a 1-petaFLOPS system can potentially take more than 50% performance hits because of frequent checkpointing operations. There-

Attend HP-CAST Hamburg, May 28-29 Worldwide User Group Conference

HP-C/ST

HP Consortium for Advanced Scientific and Technical Computing
Word-Wide User Group Meeting

Scalable Computing Infrastructure (ISS/SCI) Organization

InterContinental Hotel, Fontenay 10, 20354 Hamburg, Germany May 28th – 29th, 2010

HP-CAST 14

World-wide User Group Conference with Participation of NTIG (Nordic Technical Interest Group) & HP-CAST IBÉRICA

Draft Agenda V2.1p

Thursday, May 27th - Registration & Get-Together

17:00 - 22:00	Registration		
19:00 – 22:00	HP-CAST Welcome Reception	All Attendees	

Friday, May 28th - Conference

HP-CAST — History and Outlook

```
HP-CAST 1 Dallas
                          (first one after HP/Compag & Board merger)
HP-CAST 2 Brisbane, Australia
HP-CAST 3 Pittsburgh @SCO4 (new "light" structure introduced)
HP-CAST 4 Krakow, Poland
HP-CAST 5 Seattle @SC05 (new Board elected)
HP-CAST 6 Seoul, Korea
HP-CAST 7 Tampa @SC06 (first HP-CAST "light" with tutorials)
HP-CAST 8 Karlsruhe, Germany
HP-CAST 10 Singapore
HP-CAST 12 Madrid, Spain
HP-CAST 14 Hamburg @ISC10
HP-CAST 15 New Orleans @SC10 - November 12 and 13!
```


Thank You

