Network-Oblivious Algorithms

Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci, Michele Scquizzato and Francesco Silvestri
Overview

- Background
- Summary of results
- Framework for network-oblivious algorithms
- Case studies:
 - Some network-oblivious optimal algorithms
 - An impossibility result
- Conclusions
Communication heavily affects the efficiency of parallel algorithms.

Communication costs depend on interconnection topology and other machine-specific characteristics.

Models of computation for parallel algorithm design aim at striking some balance between portability and effectiveness.
Background: models of parallel computation

- PRAM
- BSP, QSM
- Decomposable-BSP
- LogP ...
- Fat-Tree, Pruned Butterfly, Mesh

Parallel slackness
Bandwidth-latency
Universality

+ Portability

Effectiveness +
Background: obliviousness

- Broad consensus on bandwidth-latency models:
 - Parameters capture relevant machine characteristics
 - Logarithmic number of parameters sufficient to achieve high effectiveness (e.g., D-BSP) [Bilardi et al., 99]

- **Question:** Can we design efficient parallel algorithms oblivious to any machine/model parameters?
Background: cache-oblivious framework

- Cache-oblivious framework [Frigo et al., 99]

- Parameters M, B not used for algorithm design
- Optimality in a cache-RAM hierarchy implies optimality in a multilevel cache hierarchy
Summary of results

- Notion of network-oblivious algorithm
- Framework for design, analysis, and execution of network-oblivious algorithms
- Network-oblivious algorithms for case study applications (matrix multiplication and transposition, FFT, sorting)
- Impossibility result for matrix transposition
Framework for network-oblivious algorithms

Specification model: parallelism as a function of input size, no machine parameters

Evaluation model: introduces number of PEs p and communication block size B

Execution model: introduces hierarchical network structure

Main technical result: for a wide class of network-oblivious algorithms, optimality in the evaluation model implies optimality in the execution model
Specification model

Specification model \(M(n) \):

- \(n \) Processing Elements (PEs)
- An algorithm \(A \) is a sequence of **supersteps**, separated by barriers
- In a superstep, each PE can:
 - Perform operations on local data
 - Send/receive messages to/from PEs
- Note that \(M(n) \) is a **BSP** [Valiant, 90] with maximum (reciprocal) bandwidth \((g=1)\) and no latency \((l=0)\)
Network-oblivious algorithm

Definition: A network-oblivious algorithm for a problem Π is an $M(n)$-algorithm, where n (parallelism) is a function of the input size.

Remarks: algorithm specification is

- independent of network topology
- independent of actual number of processors
Evaluation model

- Evaluation model $M(p, B)$:

 - $M(p, B)$ is an $M(p)$ where:
 - Data exchanged between two PEs travel within blocks of B words
 - Block-degree $h^s(p, B)$: maximum number of blocks sent/received by any PE in a superstep s
 - Communication complexity of A:
 $$\sum_{s \in A} h^s(p, B)$$
Execution of an $M(n)$-algorithm on an $M(p, B)$:

- Every $M(p, B)$-PE simulates a segment of n/p consecutive $M(n)$-PEs
- Communications between $M(n)$-PEs in the same segment \Rightarrow local computations in $M(p, B)$.
Optimal network oblivious algorithm A for Π

∀ instance of size n, ∀ p ≤ n, and ∀ B ≥ 1,
the execution of A on an M(p, B) attains
asymptotically minimum communication complexity
among all M(p, B)-algorithms for Π
Execution model

- **Execution model** D-BSP\((p, g, B)\) [De la Torre et al., 96]:
 - \(p\) Processing Elements (PEs)
 - Recursive decomposition into \(i\)-clusters of \(p/2^i\) PEs, \(0 \leq i < \log p\)
 - An algorithm \(A\) is a sequence of **labeled** supersteps
 - In an \(i\)-superstep, a PE can:
 - Perform operations on local data
 - Send/receive messages to/from PEs in its \(i\)-cluster

\[\begin{align*}
\text{P} & \quad \text{M} \\
\text{B}_2, g_2 & \\
\text{B}_p, g_1 & \\
\text{B}_0, g_0 & \\
\end{align*} \]
Execution model D-BSP(p, g, B) [De la Torre et al., 96]:

- an $M(p, \cdot)$ with a hierarchical network structure
- p Processing Elements (PEs)
- Recursive decomposition into i-clusters of $p/2^i$ PEs, $0 \leq i < \log p$
- $g=(g_0, \ldots, g_{\log p -1})$, $B=(B_0, \ldots, B_{\log p -1})$

- g_i : bandwidth parameter in an i-cluster
- B_i : block size for communications in an i-cluster
An algorithm A is a sequence of labeled supersteps separated by barriers

In an i-superstep, a PE can:
- Perform operations on local data
- Send/receive messages to/from PEs in its i-cluster

Block degree of i-superstep s: $h^s(p, B_i)$

Communication time of i-superstep s: $h^s(p, B_i) \cdot g_i$

Communication time of A: sum of comm. times of constituent supersteps

Remark: an $M(p, \cdot)$-algorithm can be naturally translated into a D-$BSP(p, g, B)$-algorithm by suitably labeling each superstep
Theorem: an optimal network-obludious algorithm A exhibits an asymptotically optimal communication time when executed on any D-BSP(p, g, B) with $p \leq n$ under the following conditions:

- **Wiseness**: for each superstep of A, its communications are either *almost all local* or *almost all non-local* w.r.t. the D-BSP(p, g, B) clusters
- **Fullness**: all communicated blocks are *almost full*

Remark: The actual wiseness and fullness conditions specified in the paper are less restrictive
Problem: multiplying two $\sqrt{n} \times \sqrt{n}$ matrices, A and B.

Initial row-major distribution of A and B among the n PEs

- 8 subproblems
- Solve each subproblem in parallel within a distinct segment of $n/8$ PEs
Matrix Multiplication (cont’d)

- When executed on an $M(p, B)$:
 - **Optimal** communication complexity $O(n/p^{2/3})$

- By the previous theorem, this algorithm is also **optimal** in a D-BSP(p, g, B), as long as $B_i \leq n/p$

- The algorithm requires $\Theta(n/p^{1/3})$ memory blow-up, **unavoidable** if minimal communication is sought

- A different recursive strategy yields
 - **Constant** memory blow-up
 - Communication complexity $O(n/p^{1/2})$: **optimal** under constant memory blow-up constraint [Iyony et al., 04]
Matrix Transposition

- The naïve one-step algorithm doesn’t exploit the block feature.
- Two-step algorithm based on Z-Morton ordering.

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
4 & 5 & 6 & 7 \\
8 & 9 & 10 & 11 \\
12 & 13 & 14 & 15 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
0 & 1 & 4 & 5 \\
2 & 3 & 6 & 7 \\
8 & 9 & 12 & 13 \\
10 & 11 & 14 & 15 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{cccc}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
\end{array}
\]

Transform a Z-ordering in a row-major ordering

Transform a Z-ordering in a column-major ordering

- If \(B \leq \sqrt{\frac{n}{p}} \), optimal communication complexity \(\Theta \left(\frac{n}{pB} \right) \)

Cetraro, June 21-25, 2010
Matrix Transposition: impossibility result

- Constraint $B \leq \sqrt{\frac{n}{p}}$ reminiscent of the tall-cache assumption in [Frigo et al., 99] (necessary to achieve cache-oblivious optimality for the matrix transposition problem [Silvestri, 06]).

- Can we remove the assumption on the block size? No!

Theorem: There is no network-oblivious matrix transposition algorithm such that for each $p \leq n$ and $B \leq n/p$, its execution on $M(p, B)$ achieves optimal communication complexity $\Omega(n/(pB)(1+f(n,p,B)))$.
FFT and Sorting

- **Fast Fourier Transform of** n **elements** $(\text{FFT}(n))$:
 - Network-oblivious algorithm exploits the recursive decomposition of the $\text{FFT}(n)$ dag into \sqrt{n} $\text{FFT}(\sqrt{n})$ subdags
 - **Optimal** algorithm for $p \leq n$ and $B \leq \sqrt{\frac{n}{p}}$

- **Sorting of** n **keys**:
 - Network-oblivious algorithm based on a recursive version of *Columnsort*.
 - **Optimal** algorithm for $p \leq n^{1-\varepsilon} \forall$ constant ε and $B \leq \sqrt{\frac{n}{p}}$
Conclusions

Our contribution:

- Notion of network-oblivious algorithms:
 - Independent of actual number of processors and of communication block size
 - Independent of interconnection network topology.

- Framework for design, analysis, and execution of network-oblivious algorithms.

- Optimality: general theorem and specific results for prominent case studies
Conclusions (cont’d)

Further research:

- Network-oblivious algorithms for other key problems
- Broaden the spectrum of machines for which network-oblivious optimality translates into optimal time
- Lower bound techniques to limit the level of optimality of network-oblivious algorithms

QUESTION: are p and B the right parameters to be oblivious to?