
1

The Data-Flow model of Computation in
the Multi-core era

Skevos (Paraskevas) Evripidou
Department of Computer Science,

University of Cyprus
skevos@cs.ucy.ac.cy

2

Historical Overview

 Since the advent of Digital computers, in the early 1940’s, the
computer architecture field has been dominated by the sequential
model of execution.
 von Neumann model of execution

 Since the 1960’s proponents of Parallel Processing have being
predicting the end of sequential computing and the swift to
parallel processing.
 Michael Flyn develop his classification of Parallel system

because he believed that Parallel processing was going
mainstream after the ILLIAC IV development– Personal
communication

 Chip designers have been using the power granted to them by
Moore's Law to postpone the shift indefinitely.

 The Revenge of the Parallel Processing Nerds: At the dawn of
the new millennium the sequential computing had a head on
collision with the Memory Wall.
 The problem most of them are not around anymore

(retire) or have switch field

3

Use of excessive force

 The trend in the 90’s was to build high-end
microprocessors with
 Large Cache and Multiple Issue/Superscalar to

Tolerate Memory Latency (Memory Wall)
 Exploit ILP (through increased complexity)

 Out of Order Execution (OOE)
 Deconstruct the Sequential program with hardware assisted

implicit synchronization.
 Ad Hoc Data-Flow the hard and very costly way. (Restricted

dataflow)

 Contributed to the rise of the Power and Heat Walls

4

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

20%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: 20%/year 2002 to 2005

Arvind Keynote speech ISCA 2005,
: RAMPS project -- Dave Patterson

5

CPU-Memory Speed

Source: J. Patterson, “Modern Microprocessors”,
www.pattosoft.com.au/Articles/ModernProcessors

Overcoming the memory wall:
• 8KB L1 (Intel 486, 1989)
• On-board L2 (Pentium Pro, 1995)
• On-package L2 (Pentium II, 1997)
• On-die L2 (Pentium III, 1999)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
10

20
09

20
08

6

Where have all the transistors gone?

 Superscalar
(multiple instructions per clock
cycle)

Execution

Icache

D
cache

branch

TLB

Intel Pentium III
(10M transistors)

2 Bus Intf

Out-Of-Order

SS

• Branch prediction
(predict outcome of decisions)

• 3 levels of cache

• Out-of-order execution
(executing instructions in
different order than programmer
wrote them)

Source: J. Patterson, “The future of Microprocessors”,
NAE presentation 2001

7

A view of the Research Labs at INTEL

 “A major breakthrough in Boosting IPC is the
introduction of out-of-order execution, where
instruction execution depends on Data-Flow, not on the
Program counter”

 “out-of-order execution involves dependency analysis
and instruction scheduling, therefore its takes longer
time (more pipe stages) to process an instruction in an
out-of-order microprocessor. “

 “With deeper pipe, an out-of-order microprocessor
suffers more from branch misprediction”

 “Needles to say, an out-of-order microprocessor
especially a wide-issue one is much more complex and
power hungry.”

Quotations from
Ronny Ronen et al, Coming Challenges in Microarchitevcture
and Architecture. Proceedings of the IEEE, vol 89, No 3. March 2001

8

The Products of Intel: P4 --2000-2006

 1.3 GHz – 3.8 GHz
 20 Pipeline stages vs 10 for P3
 At the launch of the P4, Intel stated NetBurst was

expected to scale to 10 GHz (over several fabrication
process generations).

 In 2005/6 Intel shifted development away from P4
(NetBurst) to focus on the cooler running Pentium M
architecture.

 In March 2006, Intel announced the Intel Core
microarchitecture, which puts greater emphasis on
energy efficiency and performance per clock.

9

0

1

10

100

1,000

1980 1990 2000

 d
ie

 s
iz

e
(m

m
2)

Moore’s Law vs. Common Sense?

RISC II die

Intel MPU die

Scaled 32-bit, 5-stage RISC II 1/1000th of current
MPU, die size or transistors (1/4 mm2)

~1000X

Source: J. Patterson, “The future of Microprocessors”,
NAE presentation 2001

10

Switch to Multi-core chips

 The switch did not address the cause of the problem
but it was just an engineering work-around.

 Similar very-complex and power hungry cores at lower
frequencies.

 Still most of transistors are used to overcome the
major limitations of the Control flow model: Intolerance
to Memory Latencies

11

Multi-core chips and the Concurrency Challenge

 Old Challenges: the inability of the sequential model to tolerate
long latencies.
 Techniques used to tackle this problem, such OOE and large

caches, increase complexity and power consumption.
 New Challenges: Concurrency is now the major issue for success

 Extending the sequential model with concurrent constructs is an
ad hoc solution

 Revisit alternative models that are naturally parallel

 Data-Flow is a formal and elegant model for handling concurrency
 Functional/Side-effect free

 Easy programmability
 An operation is scheduled for execution only after all its input

data have been produced.
 Tolerance to Memory, Synchronization, and Network latencies

 The Optimized Sisal compiler was the best parallelizing
compiler of its time

12

Data-flow 101

 Tolerance to Memory and communication Latencies.
 Instructions are executed after their Input data are ready!
 This can be optimized to mean present in the faster level of the

Memory hierarchy
 Immunity to the Power Wall

 Tolerance to synchronization latencies
 No need for Barriers, Busy-waits etc
 Data-Flow semantics taken care of these

 Data-Flow execution is functional
 Observes the single assignment semantics
 No need for exclusive access, locks etc.
 No Side –effects
 Easier to parallelise since only true data-decencies exits in a

Data-flow graph

13

Data-flow Architectures

 Proposed in the 70s (Most people credit Jack Dennis of
MIT as the “father” of Data-Flow)
 Asynchrony: Execution is driven by data availability.
 Functional: No side effects.

 Implementation: Provide ‘‘Context-switch’’ support at
the instruction level

 Data-flow programs are represented as graphs:
 The nodes (actors) are the instructions of the program
 The arcs carry data from producer to consumer actor

 Enabling rule: an instruction is enabled (i.e. executable)
if all operands are available.

 An instruction can be fired (i.e. executed) only after it
becomes enabled.

14

Dynamic Data-Flow (DDF)/Tagged Token DF (TTDF)

 Developed independently by Gurd & Watson at the University
of Manchester and Arvind at UCI and MIT

 Each loop iteration or subprogram invocation can execute in
parallel as a separate instance of a reentrant subgraph.

 Each token has a tag: The address of the instruction for
which the particular data value is destined and context
information

 V[c.s.i] c: context, s: inst. pointer and i: Iter. identifier,
 Each arc can be viewed as a bag that may contain an arbitrary

number of tokens with different tags.
 The enabling and firing rule is now:

A node is enabled and fired as soon as tokens
with identical tags are present on all input arcs.

15

Iteration in DDF: U-interpreter

 U-Intpreter: Special
Actors for Tag
Manipulation

 L: add a loop context
 L-1: Restores orig.

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 1

L-1

L

D-1

D

+

1

3
<FT

0[c.0]0[c.1]

+

T[c.0]

1[c.0]

1[c.1]

0[c]

0[c.1]

5[c]

16

Iteration in DDF: U-interpreter

 U-Intpreter: Special
Actors for Tag
Manipulation

 L: add a loop context
 L-1: Restores orig.

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 2

L-1

L

D-1

D

+

1

3
<FT

1[c.1]1[c.1]

+

T[c.1]

2[c.1]

2[c.2]

1[c.1]

5[c]

17

Iteration in DDF: U-interpreter

 U-Intpreter: Special
Actors for Tag
Manipulation

 L: add a loop context
 L-1: Restores orig.

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 3

L-1

L

D-1

D

+

1

3
<FT

2[c.2]2[c.2]

+

T[c.2]

3[c.2]

3[c.3]

2[c.2]

5[c]

18

Iteration in DDF: U-interpreter

 U-Intpreter: Special
Actors for Tag
Manipulation

 L: add a loop context
 L-1: Restores orig.

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from

function call

Y:= 5 + for i in 1,2
returns value of i
end for

SISAL code!

Loop Exit

L-1

L

D-1

D

+

1

3
<FT

3[c.3]3[c.3]

3[c]

+

F[c.3]

3[c.3]

3[c.0]

5[c]

5[c]
3[c]

8 [c]

19

Manchester Dataflow Machine [Gurd & Watson 1979]

Token Queue

I/0 Switch

Processing Unit

Instruction Store

Matching Unit

Token Packets

Token-pair
Packets

Executable
Packets

Overflow Unit

Token Packets

Token Packets

0.888.670.28RSIM/1

0.686.120.08RSIM/1

0.898.260.10RSIM/1

0.161.360.04RSIM/1

Dataflow
12 FUs

Dataflow
1 FU

Vax
11/780

Program

[Gurd, Kirkham & Watson 1985]

 Operational 1981
 Performance of 1.2 MIPS
 Matching Unit 1M tokens
 Parallel Hashing: mapping of

incoming tag to a set of 8 slots
 Associative matching at the Slot

20

Limitations of TTDF machines

1. Implementation of Waiting-Matching Store.
 Associate memory is ideal but unfeasible
 Hashing techniques are not fast enough to be a single

pipeline stage.
 Amount of parallelism is unpredictable, might fill up the

Waiting-Matching store and cause deadlock.
 Overflow is possible but complicated.

2. Unbounded size of the activity names.
3. Different types of Stores (Matching store, Program

store,Token Queue) made it difficult for memory
management.

4. Poor performance with sequential code

[Arvind, Bic, Ungerer 1991]

21

Monsoon Speed Up Results
Boon Ang, Derek Chiou, Jamey Hicks

Matrix Multiply
500 x 500

Paraffins
n=22

GAMTEB-2C
40 K particles

SIMPLE-100
100 iters

1pe

1.00

1.00

1.00

1.00

1pe

1057

322

590

4681

2pe

1.99

1.99

1.95

1.86

2pe

531

162

303

2518

4pe

3.90

3.92

3.81

3.45

4pe

271

82

155

1355

8pe

7.74

7.25

7.35

6.27

8pe

137

44

80

747

speed up critical path
(millions of cycles)

September, 1992

Could not have
asked for more

Slide from Arvind’s Keynote speech at ISCA 2005

22

Dynamic Data-Flow (DDF) Summary

 Elegant solution: parallel processing with implicit
synchronization

 It can exploit the ultimate amount of parallelism.
 Loop throttling to limit the amount of parallelism!

 Immunity to high communication and memory latencies

 Throughout the years innovative Data-Flow prototypes
showed very good relative performance
 In absolute performance they did not fare well when

compared to commercial offerings of the same era.
 Difficult to benefit directly from efficient constructs

and building blocks of the von Neumann model
 If you cannot beat them Join-Them

23

Our view

 The Computer Science Community has resisted the move
to a parallel model of execution such as Data-Flow
because it did not have to do it!
 Control flow was good enough for everyone to keep its job.

 The switch to Multi-core has brought concurrency to the
mainstream.

 Now the basic building block, the microprocessor, has to
exploit concurrency:
 Option1: continue doing it in ad hoc manner
 Option2: Good time to reconsider alternative models such a

data-flow
 In the near term the more likely “winner” will be systems

that can utilize as much as possible from the existing
State of Art know-How

24

Data-Driven Multithreading overview

 Compiler driven thread generation
 Data-Driven scheduling of Threads
 Sequential execution within a thread

 Non Blocking--Threads execute to completion
 Can be Implemented efficiently with conventional

microprocessors with the addition of memory mapped
hardware unit: Thread Synchronization Unit (TSU)

 CacheFlow: Data-Driven perfecting improves drastically
the hit ratio of the cache and at the same time requires
much smaller cache memories.
 Reduces space and power consumption,
 Reducing further the effect of long memory latencies.

25

 Use a commercial microprocessor
for the computational Engine

 Implement the functionality of the
Synchronization Engine and the two
queues in an extra module.

 The TSU integrates the function of
the SE, the RQ and AQ.

 The processor does not have any
knowledge about the presence of
the TSU.

 Five addresses are reserved for the
communication of the processor and
the TSU.

 The TSU uses snooping to intercept
these addresses and process them
accordingly.

Thread Synchronization Unit (TSU)

CacheSE

Ready Queue

Ack. Queue

Memory

Processor

TSU

26

The TSU/Processor Interface

The TSU communicates with the CPU through five non-cachable
memory addresses. These can also be I/O addresses.

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

27

The TSU/Processor Interface

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

The RqIPtr used to provide to the CPU the address
of the next thread to be executed.

28

The TSU/Processor Interface

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

The RqDFPtr used to provide to the CPU the address
of the data frame of the thread.

29

The TSU/Processor Interface

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

The AqStatus used by the CPU to provide to the TSU
Information about the status of the completed thread.

30

The TSU/Processor Interface

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

The AqIndex/RqIndex used by the TSU/CPU to provide the
iteration index of the thread.

31

The TSU/Processor Interface

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine
executbility

PC
Motherboard

These addresses are intercepted by the Snooping Unit and
forwarded to TSU for further processing.

32

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

33

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

TGM contains the IFP,
DFP and the two

consumers (Con1 and
Con2).

Graph memory: Producer consumer
relationships among threads

34

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

The SM contains
the Ready Counts.
One value for each

loop iteration.Ready count of a thread: number of producers

35

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

The processor reads
from the RQ pointers
(IFP, DFP and index)
of ready threads and

executes them

36

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

After executing a
thread, the processor
stores in the AQ
information (Thread#,
index and status) of the
executed thread.

37

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

The TSU determines
the consumers of
completed threads
from the GM.

Consumers

38

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

Update SM and
check if any of the
consumers is ready
(Ready Count = 0)

0

2

39

Data-Driven Multithreading Execution

S
no

op
in

g
U

ni
t

The TSU loads in
the RQ the pointers
(IFP, DFP) of ready
thread from the GM
and index the SM.

0

2

IFP, DFP

40

Thread Synchronization Unit (TSU)

 Three Units
 Thread Issue Unit
 Post Processing Unit
 Network Interface Unit

 Units are Decoupled/asynchronous
 Communicate via Queues

41

D2NOW with Pentium Workstations (2006)

In
te

rc
on

ne
ct

io
n

N
et

w
or

k

Main Memory
L2 Cache

Processor

Workstation 1

C
O

AS
T

Sl
ot

MotherboardAdd-on Card

TSU

TIUPPUNIU

Main Memory
L2 Cache

Processor

Workstation N

C
O

A
ST

 S
lo

t
MotherboardAdd-on Card

TSU

TIUPPUNIU

Commodity Workstation Pentium
Processor

TSU attached to
COAST slot

 TSU could go on the COAST slot
 TSU and Cache with dual ported Tag bits

 TSU in the Co-processor slot, Use MESI instructions for cacheflow

42

CacheFlow: A Cache Management Policy for
Data-Driven Multithreading

 Motivation
 The Firing Queue of a DDM machine determines the

order in which the threads are executed
 Each Thread has a pointer to its Data
 Future memory accesses are known!

 CacheFlow reduces cache misses by Prefetching blocks
that are needed by the threads that enter the RQ
(basic implementation)
 Optimization 1: False Conflict avoidance: Not scheduling

threads that could cause false cache conflicts
 False cache conflicts: prefetching displaces data prefetch

for other threads waiting in the FQ
 Optimization 2: Thread Reordering Reordering the

sequence of execution of ready threads to exploit
locality.

43

Effect of CacheFlow on Cache Miss Rate and Speedup

 DDM increases miss rate
 CacheFlow reduces miss rate (lower than the sequential)
 Optimizations reduce further miss rate

2

4

6

8

10

12

0

C
ac

he
 m

is
s

ra
te

 (%
)

1.4

3.1

6.9

9.8

2

Small Data Size

Sequential DDM - No CacheFlow DDM - Basic Prefetch

DDM - Conflict Avoidance DDM - Thread Reordering

16%

23%

7%

5% 8%

Large Data Size
Sp

ee
du

p
Average among all applications

DDM - No CacheFlow

DDM - Basic Prefetch

DDM - Conflict Avoidance

DDM - Thread Reordering

4

8

12

16

20

24

28

0

24.4

19.7

22.6

26.0

 Problem data size increases miss rate
 Minimal increase in miss rate when CacheFlow is employed

 Significant speedup improvement for all applications
 Average speedup increases from 19.7 to 26.0

44

Experimental Results Summary

 Thread granularity: impact on
 DDM overheads, locality, TSU latency, pipeline performance
 Increasing from 1 to 8 increases performance by 20%

 12.8 to 16.8 (on 32-node system)
 Communication assist optimizations: impact on

 CPU communication overheads
 Lead to 22% increase in speeedup (19.7 speedup 32-nodes)
 Increase in communication latency by 500%

 in 13.4% (2.8-23%) average speedup reduction
 But DDM could destroy locality and increase cache misses
 CacheFlow: hardware prefetching to

 Completely eliminates extra misses due to DDM
 Serial: 6.9 DDM: 9.8 DDM w Cacheflow: 1.4

 further reduces cache misses
 Overall speedup increased from 19.7 to 26.0 (32-nodes)

45

TFux (Thread Flux) 2nd DDM implementation 2008

 TFlux developed a complete platform:
 definition of DDM compiler directives,
 a preprocessor tool to generate source code that includes

the application as well
 Kernel that provides runtime support and scheduling code,

 Enables compatibility of DDM codes on a variety of
commodity multi-core systems (x86, Sparc, possibly on
anything that yuns Linux and supports C)

 Hardware simulations using Simics.

46

FPGA based implementation of DDM (Xilinx VirtexPro II) 2008

4747

 DDM-VM virtualizes DDM execution across
heterogeneous and homogeneous multi-core system
including distributed ones.

 DDM-VMc, is the branch of DDM-VM targeting
high-performance heterogeneous multi-cores.
 The Cell is a representative example of such

systems.
 DDM-VMs, Symmetric multi-core systems

 Allow us to compare with (“similar”) state of the art
parallel processing approaches/systems

DDM-VM
(Data-Driven Multithreading Virtual Machine), 3rd DDM impl.

48

The DDMThe DDM--VMVMcc

 The Cell provides a high a computational power on a single chip (204
GFLOPs) but programming it is not a trivial process

 Utilizing the DDM model of execution DDM-VMc leverages the
latency tolerance and distributed concurrency of the Dataflow
model with the efficient execution of the sequential model to
program the Cell processor:
 It virtualizes the parallel resources of the Cell and the low-

level details of memory management, scheduling,
synchronization and execution instantiation

 It schedules threads dynamically at run-time and manages the
memory hierarchy transparently using CacheFlow

 It interleaves the scheduling of threads & management data
with the execution of the threads, thus tolerating memory &
synch. latencies

49

The DDMThe DDM--VMVMcc ArchitectureArchitecture

Common TSU Structures

GM SM AQ

DFPL CL RCL

SPE0 Structures SPE8 Structures

...

FQ

CD

WQ

RCLD

CQ

TSU Memory Structures

DDMCommand...
DDMCommand...
DDMCommand...

FQ

CD

WQ

RCLD

CQ
DDMCommand...
DDMCommand...
DDMCommand...

RC?=0

...

PPE
SPE 8
SPE 0

DDM Program
DDM Thread i :

Computation

DDM Thread i+1 :

DMA Call

DMA Call

DMA Call
Rest of Main Memory

Program Data

DMA Call

Runtime calls

...

DDM-VMc SPE Runtime Code

RCLD (Cache Lookup)

DDM Cache

Command Buffer

DDMCommand_ThreadFinish...
DDMCommand_ThreadFinish...
DDMCommand_ThreadFinish...

DDM-VMc PPE Runtime

Thread Synchronization
Unit (TSU)

+
CacheFlow
Execution

Computation

Runtime calls

Runtime calls

Runtime calls

Main Memory

50

CacheFlowCacheFlow on the Cell on the Cell
The AlgorithmThe Algorithm

 CacheFlow an automated and
efficient memory management
for the Cell

 A portion of the LS of each SPE
is pre-allocated and divided into
cache blocks.

 A Cache Directory (CD) keeps
track of the blocks state.

 CacheFlow maintains consistency
with DF synchronization

 Move data in before starts
execution and write back after
finishing

 Exploits explicit locality

51

20-24%22-35%31-149%

Coarser grain
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs CEllSs for Matrix Multiplication

19-26%34-174%60-455%

Coarser grain
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs CEllSs for Cholesky

93-113%90-122%67-93%

Coarser grain
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs Sequoia Matrix Multiplication

20-41%17-37%16-70%

Coarser grain
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs Sequoia for ConV2D

Speedup comparison of DDV-VMc vs CELLSs (BSC) and
Sequoia (Stanford) (1 to 6 SPE on Sony Playstation)

52
5
2

Abstraction Layer
and Reliability Layer

Compilation
Tools

Source code

Programming
Model

Data
dependencies

Transactional
memory

Teradevice
hardware
(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly
1,000‐10,000 cores...

WP2

WP3

WP4

WP5

WP7

WP6

VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

• 1000 Billion‐ or 1 TERA‐
device computing platforms
pose new challenges:
– (at least) programmability,

complexity of design,
reliability

• TERAFLUX context:
– High performance

computing and
applications (not
necessarily embedded)

• TERAFLUX scope:
– Exploiting a less exploited

path (DATA‐FLOW) at each
level of abstraction

What is about
Exploit Data-Flow concurrency and combine it

with Transactional Memory
on x86 ISA + Thread Synchronization Unit. …

www.teraflux.eu

53

Our proposal B2B plus DF support at the Thread level

 Back to Basic:
 Just a simple Fast execution Pipeline

 Hardware support for Data-Driven Threaded execution
 Deterministic Pre-fetching into the “cache”

