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Historical Overview

 Since the advent of Digital computers, in the early 1940’s, the 
computer architecture field has been dominated by the sequential 
model of execution.
 von Neumann model of execution

 Since the 1960’s proponents of Parallel Processing have being 
predicting the end of sequential computing and the swift to 
parallel processing.
 Michael Flyn develop his classification of Parallel system 

because he believed that Parallel processing was going 
mainstream after the ILLIAC IV development– Personal 
communication

 Chip designers have been using the power granted to them by 
Moore's Law to  postpone the shift indefinitely.

 The Revenge of the Parallel Processing Nerds: At the dawn of 
the new millennium the sequential computing had a head on 
collision with the Memory Wall.
 The problem most of them are not around anymore 

(retire) or have switch field



3

Use of excessive force

 The trend in the 90’s was to build high-end 
microprocessors with
 Large Cache and Multiple Issue/Superscalar to 

Tolerate Memory Latency (Memory Wall)
 Exploit ILP (through increased complexity)

 Out of Order Execution (OOE) 
 Deconstruct the Sequential program with hardware assisted 

implicit synchronization.
 Ad Hoc Data-Flow the hard and very costly way. (Restricted 

dataflow)

 Contributed to the rise of the Power and Heat Walls
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CPU-Memory Speed

Source: J. Patterson, “Modern Microprocessors”, 
www.pattosoft.com.au/Articles/ModernProcessors

Overcoming the memory wall:
• 8KB L1 (Intel 486, 1989)
• On-board L2 (Pentium Pro, 1995)
• On-package L2 (Pentium II, 1997)
• On-die L2 (Pentium III, 1999)

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
10

20
09

20
08



6

Where have all the transistors gone?

 Superscalar 
(multiple instructions per clock 
cycle)

Execution

Icache

D
cache

branch

TLB

Intel Pentium III 
(10M transistors)

2 Bus Intf

Out-Of-Order

SS

• Branch prediction 
(predict outcome of decisions)

• 3 levels of cache

• Out-of-order execution 
(executing instructions in 
different order than programmer 
wrote them)

Source: J. Patterson, “The future of Microprocessors”, 
NAE presentation 2001
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A view of the Research Labs at INTEL

 “A major breakthrough in Boosting IPC is the 
introduction of out-of-order execution, where 
instruction execution depends on Data-Flow, not on the 
Program counter”

 “out-of-order execution involves dependency analysis 
and instruction scheduling, therefore its takes longer 
time (more pipe stages) to process an instruction in an 
out-of-order microprocessor. “

 “With deeper pipe, an out-of-order microprocessor 
suffers more from branch misprediction”

 “Needles to say, an out-of-order microprocessor 
especially a wide-issue one is much more complex and 
power hungry.”

Quotations from
Ronny Ronen et al, Coming Challenges in Microarchitevcture
and Architecture. Proceedings of the IEEE, vol 89, No 3. March 2001
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The Products of Intel: P4 --2000-2006

 1.3 GHz – 3.8 GHz
 20 Pipeline stages vs 10 for P3
 At the launch of the P4, Intel stated NetBurst was

expected to scale to 10 GHz (over several fabrication
process generations). 

 In 2005/6 Intel shifted development away from P4 
(NetBurst) to focus on the cooler running Pentium M 
architecture. 

 In March 2006, Intel announced the Intel Core 
microarchitecture, which puts greater emphasis on 
energy efficiency and performance per clock.
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Moore’s Law vs. Common Sense?

RISC II die

Intel MPU die

Scaled 32-bit, 5-stage RISC II 1/1000th of current 
MPU, die size or transistors (1/4 mm2 )

~1000X

Source: J. Patterson, “The future of Microprocessors”, 
NAE presentation 2001
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Switch to Multi-core chips

 The switch did not address the cause of the problem 
but it was just an engineering work-around.

 Similar very-complex and power hungry cores at lower 
frequencies.

 Still most of transistors are used to overcome the 
major limitations of the Control flow model: Intolerance 
to Memory Latencies
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Multi-core chips and  the Concurrency Challenge

 Old Challenges: the inability of the sequential model to tolerate 
long latencies.
 Techniques used to tackle this problem, such OOE and large 

caches, increase complexity and power consumption.
 New Challenges: Concurrency is now the major issue for success

 Extending the sequential model with concurrent constructs is an 
ad hoc solution

 Revisit alternative models that are naturally parallel 

 Data-Flow is a formal and elegant model for handling concurrency
 Functional/Side-effect free

 Easy programmability
 An operation is scheduled for execution only after all its input

data have been produced. 
 Tolerance to Memory, Synchronization, and Network latencies

 The Optimized Sisal compiler was the best parallelizing 
compiler of its time
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Data-flow  101

 Tolerance to Memory and communication Latencies.
 Instructions are executed after their Input data are ready! 
 This can be optimized to mean present in the faster level of the

Memory hierarchy
 Immunity to the Power Wall

 Tolerance to synchronization latencies
 No need for Barriers, Busy-waits etc
 Data-Flow semantics taken care of these

 Data-Flow execution is functional
 Observes the single assignment semantics
 No need for exclusive access, locks etc.
 No Side –effects
 Easier to parallelise since only true data-decencies exits in a 

Data-flow graph
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Data-flow Architectures

 Proposed in the 70s (Most people credit Jack Dennis of 
MIT as the “father” of Data-Flow)
 Asynchrony: Execution is driven by data availability.
 Functional: No side effects.

 Implementation: Provide ‘‘Context-switch’’ support at 
the instruction level

 Data-flow programs are represented as graphs:
 The nodes (actors) are the  instructions of the program 
 The arcs carry data from producer to consumer actor

 Enabling rule: an instruction is enabled (i.e. executable) 
if all operands are available.

 An instruction can be fired (i.e. executed) only after it 
becomes enabled.
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Dynamic Data-Flow (DDF)/Tagged Token DF (TTDF)

 Developed independently by Gurd & Watson at the University 
of Manchester and Arvind at UCI and MIT

 Each loop iteration or subprogram invocation can execute in 
parallel as a separate instance of a  reentrant subgraph. 

 Each token has a tag: The address of the instruction for 
which the particular data value is destined and context 
information

 V[c.s.i] c: context, s: inst. pointer and i: Iter.  identifier, 
 Each arc can be viewed as a bag that may contain an arbitrary 

number of tokens with different tags. 
 The enabling and firing rule is now:

A node is enabled and fired as soon as tokens 
with identical tags are present on all input arcs.
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Iteration in DDF: U-interpreter

 U-Intpreter: Special 
Actors for Tag 
Manipulation

 L: add a loop context
 L-1: Restores orig. 

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from 

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 1

L-1

L

D-1

D

+

1

3
<FT

0[c.0]0[c.1]

+

T[c.0]

1[c.0]

1[c.1]

0[c]

0[c.1]

5[c]
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Iteration in DDF: U-interpreter

 U-Intpreter: Special 
Actors for Tag 
Manipulation

 L: add a loop context
 L-1: Restores orig. 

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from 

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 2
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+
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Iteration in DDF: U-interpreter

 U-Intpreter: Special 
Actors for Tag 
Manipulation

 L: add a loop context
 L-1: Restores orig. 

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from 

function call

Y:= 5 + for i in 1,3
returns value of i
end for

SISAL code!

Iteration 3

L-1

L

D-1

D

+

1

3
<FT

2[c.2]2[c.2]

+

T[c.2]

3[c.2]

3[c.3]

2[c.2]

5[c]
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Iteration in DDF: U-interpreter

 U-Intpreter: Special 
Actors for Tag 
Manipulation

 L: add a loop context
 L-1: Restores orig. 

Context
 D: Inc. loop identifier.
 D-1: Resets loop identif.
 A: Function call
 A-1: return from 

function call

Y:= 5 + for i in 1,2
returns value of i
end for

SISAL code!

Loop Exit

L-1

L

D-1

D

+

1

3
<FT

3[c.3]3[c.3]

3[c]

+

F[c.3]

3[c.3]

3[c.0]

5[c]

5[c]
3[c]

8 [c]
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Manchester Dataflow Machine [Gurd & Watson 1979]

Token Queue

I/0 Switch

Processing Unit

Instruction Store

Matching Unit

Token Packets

Token-pair 
Packets

Executable 
Packets

Overflow Unit

Token Packets

Token Packets

0.888.670.28RSIM/1

0.686.120.08RSIM/1

0.898.260.10RSIM/1

0.161.360.04RSIM/1

Dataflow
12 FUs

Dataflow
1 FU

Vax
11/780

Program

[Gurd, Kirkham & Watson 1985]

 Operational 1981
 Performance of 1.2 MIPS
 Matching Unit 1M tokens
 Parallel Hashing: mapping of 

incoming tag to a set of 8 slots
 Associative matching at the Slot 
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Limitations of TTDF machines

1. Implementation of Waiting-Matching Store.
 Associate memory is ideal but unfeasible
 Hashing techniques are not fast enough to be a single 

pipeline stage.
 Amount of parallelism is unpredictable, might fill up the 

Waiting-Matching store and cause deadlock.
 Overflow is possible but complicated.

2. Unbounded size of the activity names.
3. Different types of Stores (Matching store, Program 

store,Token Queue) made it difficult for memory 
management.

4. Poor performance with sequential code

[Arvind, Bic, Ungerer 1991]
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Monsoon Speed Up Results
Boon Ang, Derek Chiou, Jamey Hicks

Matrix Multiply
500 x 500 

Paraffins
n=22

GAMTEB-2C
40 K particles

SIMPLE-100
100 iters

1pe
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1.99 
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271 

82 

155

1355

8pe

7.74 

7.25 

7.35

6.27

8pe

137 

44 

80

747

speed up critical path 
(millions of cycles)

September, 1992

Could not have 
asked for more

Slide from Arvind’s Keynote speech at ISCA 2005
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Dynamic Data-Flow (DDF) Summary

 Elegant solution: parallel processing with implicit 
synchronization

 It can exploit the ultimate amount of  parallelism.
 Loop throttling to limit the amount of parallelism!

 Immunity to high communication and memory latencies

 Throughout the years innovative Data-Flow prototypes 
showed very good relative performance
 In absolute performance they did not fare well when 

compared to commercial offerings of the same era.
 Difficult to benefit directly from efficient constructs 

and building blocks of the von Neumann model
 If you cannot beat them Join-Them
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Our view

 The Computer Science Community has resisted the move 
to a parallel model of execution such as Data-Flow 
because it did not have to do it!
 Control flow was good enough for everyone to keep its job. 

 The switch to Multi-core has brought concurrency to the 
mainstream.

 Now the basic building block, the microprocessor, has to 
exploit concurrency:
 Option1: continue doing it in ad hoc manner
 Option2: Good time to reconsider alternative models such a 

data-flow
 In the near term the more likely “winner” will be systems 

that can utilize as much as possible from the existing 
State of Art know-How 
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Data-Driven Multithreading overview

 Compiler driven thread generation
 Data-Driven scheduling of Threads
 Sequential execution within a thread

 Non Blocking--Threads execute to completion
 Can be Implemented efficiently with conventional 

microprocessors with the addition of memory mapped 
hardware unit:  Thread Synchronization Unit (TSU)

 CacheFlow: Data-Driven perfecting improves drastically 
the hit ratio of the cache and at the same time requires 
much smaller cache memories. 
 Reduces space and power consumption, 
 Reducing  further the effect of long memory latencies. 
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 Use a commercial microprocessor 
for the computational Engine

 Implement the functionality of the 
Synchronization Engine and the two 
queues in an extra module.

 The TSU integrates the function of 
the SE, the RQ and AQ.

 The processor does not have any 
knowledge about the presence of 
the TSU.

 Five addresses are reserved for the 
communication of the processor and 
the TSU. 

 The TSU uses  snooping to intercept 
these addresses and process them 
accordingly.

Thread Synchronization Unit (TSU)

CacheSE

Ready Queue

Ack. Queue

Memory

Processor

TSU
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The TSU/Processor Interface 

The TSU communicates with the CPU through five non-cachable
memory addresses. These can also be I/O addresses.

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no

op
in

g 
U

ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU 

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine 
executbility

PC 
Motherboard
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The TSU/Processor Interface 

00000004

00000000

00050004003C

0005301A0030

000000000000

01500F000130

Ack. Queue

Ready Queue

Consumers
AqTNum

RqTNum

AqIndex

RqIndex

AqStatus

RqIPtr

40A0400040A0
RqDFPtr

IPtr
DFPtr

S
no
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ni
t

L2 Cache

Memory

Processor
L1 Cache

 TSU 

0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph

Template

Determine 
executbility

PC 
Motherboard

The RqIPtr used to provide to the CPU the address
of the next thread to be executed. 
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The TSU/Processor Interface 
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jl ngtv
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mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5

Graph
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Determine 
executbility

PC 
Motherboard

The RqDFPtr used to provide to the CPU the address
of the data frame of the thread. 
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The TSU/Processor Interface 
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(6) (7)
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Graph
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Determine 
executbility

PC 
Motherboard

The AqStatus used by the CPU to provide to the TSU 
Information about the status of the completed thread. 
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The TSU/Processor Interface 

00000004

00000000
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0005
0150
0003
0000
0006
0007

0150 mov ebp,RqDFPtr
mov eax,[ebp+4]
mul eax
mov ebx,eax
mov eax,[ebp+8]
mov ecx,[ebp+0c]
mul ecx
mov ecx,4
mul ecx
sub ebx,ecx
mov [ebp+10],ebx
mov eax,04
cmp ebx,0
jl ngtv
mov eax,0c

ngtv: mov AqStatus,eax
mov eax,RqIPtr
jmp eax

d=b2-4ac

a b c

<=0>0

(6) (7)

5
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Determine 
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PC 
Motherboard

The AqIndex/RqIndex used by the TSU/CPU to provide the 
iteration index of the thread. 
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The TSU/Processor Interface 
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These addresses are intercepted by the Snooping Unit and 
forwarded to TSU for further processing. 



32

Data-Driven Multithreading Execution
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Data-Driven Multithreading Execution

S
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g 
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TGM contains the IFP, 
DFP and the two 

consumers (Con1 and 
Con2).

Graph memory: Producer consumer 
relationships among threads 
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Data-Driven Multithreading Execution
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The SM contains 
the Ready Counts. 
One value for each 

loop iteration.Ready count of a thread: number of producers



35

Data-Driven Multithreading Execution
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The processor reads 
from the RQ pointers 
(IFP, DFP and index)
of ready threads and 

executes them
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Data-Driven Multithreading Execution
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After executing a 
thread, the processor 
stores in the AQ 
information (Thread#, 
index and status) of the 
executed thread.
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Data-Driven Multithreading Execution
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The TSU determines 
the consumers of 
completed threads 
from the GM.

Consumers
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Data-Driven Multithreading Execution
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Update SM and 
check if any of the 
consumers is ready 
(Ready Count = 0)

0

2
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Data-Driven Multithreading Execution
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The TSU loads in 
the RQ the pointers 
(IFP, DFP) of ready 
thread from the GM 
and index the SM.

0

2

IFP, DFP
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Thread Synchronization Unit (TSU)

 Three Units
 Thread Issue Unit
 Post Processing Unit
 Network Interface Unit

 Units are Decoupled/asynchronous
 Communicate via Queues
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D2NOW with Pentium Workstations (2006)
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TSU attached to 
COAST slot

 TSU could go on the COAST slot
 TSU and Cache with dual ported Tag bits

 TSU in the Co-processor slot, Use MESI instructions for cacheflow
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CacheFlow: A Cache Management Policy for 
Data-Driven Multithreading

 Motivation
 The Firing Queue of a DDM machine determines the 

order in which the threads are executed
 Each Thread has a pointer to its Data
 Future memory accesses are known!

 CacheFlow reduces cache misses by Prefetching blocks 
that are needed by the threads that enter the RQ 
(basic implementation)
 Optimization 1: False Conflict avoidance: Not scheduling 

threads that could cause false cache conflicts
 False cache conflicts: prefetching displaces data prefetch

for other threads waiting in the FQ 
 Optimization 2: Thread Reordering Reordering the 

sequence of execution of ready threads to exploit 
locality.
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Effect of CacheFlow on Cache Miss Rate and Speedup

 DDM increases miss rate 
 CacheFlow reduces miss rate (lower than the sequential)
 Optimizations reduce further miss rate
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 Problem data size increases miss rate 
 Minimal increase in miss rate when CacheFlow is employed

 Significant speedup improvement for all applications
 Average speedup increases from 19.7 to 26.0
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Experimental Results Summary

 Thread granularity: impact on
 DDM overheads, locality, TSU latency, pipeline performance
 Increasing from 1 to 8 increases performance by 20%

 12.8 to 16.8 (on 32-node system)
 Communication assist optimizations: impact on

 CPU communication overheads
 Lead to 22% increase in speeedup (19.7 speedup 32-nodes)
 Increase in communication latency by 500% 

 in 13.4% ( 2.8-23%) average speedup reduction
 But DDM could destroy locality and increase cache misses
 CacheFlow: hardware prefetching to 

 Completely eliminates extra misses due to DDM 
 Serial: 6.9 DDM: 9.8 DDM w Cacheflow: 1.4

 further reduces cache misses
 Overall speedup increased from 19.7 to 26.0 (32-nodes)
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TFux ( Thread Flux)  2nd DDM implementation 2008

 TFlux developed a complete platform:
 definition of DDM compiler directives, 
 a preprocessor tool to generate source code that includes 

the application as well 
 Kernel that provides runtime support and scheduling code,

 Enables compatibility of DDM codes on a variety of 
commodity multi-core systems (x86, Sparc, possibly on 
anything that yuns Linux and supports C  )

 Hardware simulations using Simics.
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FPGA based implementation of DDM (Xilinx VirtexPro II) 2008
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 DDM-VM virtualizes DDM execution across 
heterogeneous and homogeneous multi-core system  
including distributed ones. 

 DDM-VMc, is the branch of DDM-VM targeting 
high-performance heterogeneous multi-cores. 
 The Cell is a representative example of such 

systems.
 DDM-VMs, Symmetric multi-core systems

 Allow us to compare with (“similar” ) state of the art 
parallel processing approaches/systems

DDM-VM
(Data-Driven Multithreading Virtual Machine), 3rd DDM impl.
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The DDMThe DDM--VMVMcc

 The Cell provides a high a computational power on a single chip (204 
GFLOPs) but programming it is not a trivial process 

 Utilizing the DDM model of execution DDM-VMc leverages the  
latency tolerance and distributed concurrency of the Dataflow 
model  with the efficient execution of the sequential model to 
program the  Cell processor:
 It virtualizes the parallel resources of the Cell and the low-

level details of memory management, scheduling, 
synchronization and execution  instantiation

 It schedules threads dynamically at run-time and manages the 
memory  hierarchy transparently using CacheFlow

 It interleaves the scheduling of threads & management data 
with the execution of the threads, thus tolerating memory & 
synch. latencies
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The DDMThe DDM--VMVMcc ArchitectureArchitecture

Common TSU Structures

GM SM AQ

DFPL CL RCL

SPE0 Structures SPE8 Structures

...

FQ

CD

WQ

RCLD

CQ

TSU Memory Structures

DDMCommand...
DDMCommand...
DDMCommand...

FQ

CD

WQ

RCLD

CQ
DDMCommand...
DDMCommand...
DDMCommand...

RC?=0

...

PPE
SPE 8
SPE 0

DDM Program
DDM Thread i :

Computation

DDM Thread i+1 :

DMA Call

DMA Call

DMA Call
Rest of Main Memory

Program Data

DMA Call

Runtime calls

...

DDM-VMc SPE Runtime Code

RCLD (Cache Lookup)

DDM Cache

Command Buffer

DDMCommand_ThreadFinish...
DDMCommand_ThreadFinish...
DDMCommand_ThreadFinish...

DDM-VMc PPE Runtime 

Thread Synchronization 
Unit (TSU)

+
CacheFlow 
Execution

Computation

Runtime calls

Runtime calls

Runtime calls

Main Memory
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CacheFlowCacheFlow on the Cell on the Cell 
The AlgorithmThe Algorithm

 CacheFlow an automated and 
efficient memory management 
for the Cell 

 A portion of the LS of each SPE 
is pre-allocated and divided into 
cache blocks. 

 A Cache Directory (CD)  keeps 
track of the blocks state.

 CacheFlow maintains consistency 
with DF synchronization

 Move data in before starts 
execution and write back after 
finishing

 Exploits explicit locality
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20-24%22-35%31-149%

Coarser grain 
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs CEllSs for Matrix Multiplication

19-26%34-174%60-455%

Coarser grain 
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs CEllSs for Cholesky

93-113%90-122%67-93%

Coarser grain 
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs Sequoia Matrix Multiplication 

20-41%17-37%16-70%

Coarser grain 
(2048x2048)

Medium Grain (1024x1024)Fine grain (512x512)

DDM-VMc vs Sequoia for ConV2D

Speedup comparison of DDV-VMc vs CELLSs (BSC) and 
Sequoia (Stanford) (1 to 6 SPE on Sony Playstation)
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5
2

Abstraction Layer
and Reliability Layer

Compilation
Tools

Source code

Programming
Model

Data
dependencies

Transactional
memory

Teradevice
hardware
(simulated)

Threads

Virtual CPUs

Extract TLP Locality optimizations

T1

T2T2

possibly
1,000‐10,000 cores...

WP2

WP3

WP4

WP5

WP7

WP6

VCPU VCPU VCPU VCPU VCPU

PC PC PC P PCPU PCPU PCPUPCPUPC PCPU PCPUPCPU

APPLICATIONSAPPLICATIONS

• 1000 Billion‐ or 1 TERA‐
device computing platforms 
pose new challenges:
– (at least) programmability, 

complexity of design, 
reliability

• TERAFLUX context:
– High performance 

computing and 
applications (not 
necessarily embedded)

• TERAFLUX scope:
– Exploiting a less exploited 

path (DATA‐FLOW) at each 
level of abstraction

What is about
Exploit Data-Flow concurrency and combine it 

with Transactional Memory  
on x86 ISA + Thread Synchronization Unit. …

www.teraflux.eu
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Our proposal B2B plus DF support at the Thread level

 Back to Basic:
 Just a simple Fast execution Pipeline

 Hardware support for Data-Driven Threaded execution
 Deterministic Pre-fetching into the “cache”


