
© 2006 GridCOMP Grids Programming with components. An advanced component platform for an effective invisible grid
is a Specific Targeted Research Project supported by the IST programme of the European Commission (DG Information Society and Media, project n°034442)

Component-oriented Approaches for
Software Development and Execution in

the Extreme-scale Computing Era

Vladimir Getov
University of Westminster, London

V.S.Getov@westminster.ac.uk

HPC-10 Workshop, Cetraro, Italy
22 June 2010

mailto:V.S.Getov@westminster.ac.uk

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 2

Overview

Background – software crisis

New challenges in the extreme-scale computing era

Example component framework overview - GCM

Problem-to-solution development pipeline

Component-oriented integrated environment

Case studies: Developing component-based codes,
Componentising existing applications, Wrapping
legacy codes

Future research topics and conclusions

Background – Software Crisis

Software vs Hardware – short-term and long-term
issues
Software crisis – legacy code and software
development cycle problems
Particularly difficult in fast developing and changing
complex computer systems
Need much shorter development cycle in order to
be able to catch up with the pace of development of
underlying hardware
Need methodology for quickly adapting/porting
legacy code

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 3

New Challenges – Extreme-scale Computing

Where ‘just more of the same’ does not work
We need to improve (in no particular order):

degree of parallelism,
performance,
cost,
footprint,
power,
reliability,
programmability,
productivity, etc.

The complexity is qualitatively harder and multidimensional –
addressing this unprecedented conundrum of challenges is
called ‘Extreme-scale Computing’.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 4

Component-based Platform

The new challenges require major breakthroughs in
hardware and software – e.g. the introduction of
multi/many core architectures.
The higher level of complexity involves a wider
range of requirements and resources
Dynamic intelligent properties and flexibility
Component-based design methodology
To develop the design methodology of a generic
component-based platform for both applications and
system frameworks to have a single, seamless,
“invisible” system image.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 5

Component-based Platform Architecture

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 6

Non-functional properties

Applications

Integrated Component-based Framework

System Software

OS Kernel

Multi/Many Cores
(homogeneous or heterogeneous)

Component
Model Tuning Interface

Platform

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 7

Example Component Framework Overview

Starting point: Fractal component model.
The main technical features of the component framework are:

Support for primitive and composite distributed components and
hierarchical composition.
XML based architecture description language (ADL).
Collective interfaces to comply with specific multi-way
communication requirements.
A comprehensive runtime API.
Support for non-functional aspects such as component control,
skeletons, and autonomy.
Advanced component scheduling/deployment via the notion of
virtual nodes and deployment descriptors.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 8

GCM and GridCOMP

GCM

A new advanced Grid Component Model (GCM)
providing high level of abstraction and specifically
designed for large scale dynamic Grid infrastructures.
Specified within the CoreGRID Euopean project.

GridCOMP

EU project: Grid programming with COMPonents.
INRIA, ERCIM, Univ Westminster, Univ Pisa, CNR,
IBM ZRL, Atos Origin, Grid Systems, Tsingua Univ,
Univ Chile, Univ Melbourne
Design and implementation of a Grid component
framework based on GCM.
Includes the development of a Grid IDE and several
use case applications.
Middleware reference platform implementation.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 9

GridCOMP Component Framework Overview

Hierarchical composition: all three components can be distributed

controller

content

server
interface client

interfaces

composite component

primitive
component

primitive
component

non-functional (control)
interfaces

binding

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 10

GridCOMP Component Framework Overview

Collective interfaces: The framework takes care of parallel
invocations, data distribution, and synchronization.

multicast interface
(one-to-one mode)

invocation parameter

scattered parameter invocation parameter

gathercast interface

list of
aggregated parameters

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 11

Component-Centric Problem-to-Solution Pipeline

Main issues: composition and dynamic properties –
deployment, monitoring and steering
Component-based Grid platform design methodology

Monitor &
Steer

Scheduling &
DeploymentCompositionProgramming

Model - GCM
Applications
(Algorithms)

Grid Integrated Development Environment

Metadata Description incl. ADL, etc.

Obtaining the
Solution

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 12

Strategy: Eclipse Framework for GIDE

Simplify complexity through graphical
composition/tools
But, allowing ONLY graphical composition
can be inflexible and inefficient
Support for 3 levels of Development

Graphical Composition
Based on GCM and using ADL
Source code level

Seamless integration with Eclipse
Widely supported with many potential plug-ins

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 13

Grid IDE Architecture - Core Block Diagram

APPLICATIONS (USE CASES)

IC2D

APIUSES (Requirements)

1.3.1-Test
Tool

1.3.2-
Debug
Tool

1.3.3-
Finalization
Deployment

Tool

1.2.1-ADL
Parser/
Verifier

1.2.2-ADL
Renderer

1.2.3-
Code/ADL
Generator

Eclipse
Framework

Grid IDE
Toolset

Monitoring

2.1.1-
Component

Monitor

2.1.2-Node
Resource
Monitor

SteeringComposition Scheduling and
Deployment

1-Development IDE 2-Data Centre IDE

2.2.1- Start/
Stop

2.2.2-Install/
Remove

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 14

Case Study: Biometric Identification System (BIS)

Identify people solely on their biometric information (1:N match)

Use fingerprint biometrics

Consider multiple fingers per person to work reliably on large
user population

Use distributed matching to achieve real-time performance

Based on business process (workflow) engine for adaptability

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 15

Case Study: Biometric Identification System (BIS)

Grid component architecture, bindings, and deployment

1. Biometric matching
component CompIDMatcher is
deployed on each node

2. DB of known identities is
distributed across the nodes

3. Identification requests are
broadcasted via multicast
interface I2

4. Each node searches its part of
the DB

Development – IBM ZRL BIS Use Case

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 16

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-
to-Peer Technologies 17

Componentizing existing applications

• Methodology: – manual with on-going activity on identifying
parts for automatic support and tools

• Sample Code: Jem3D – 3-dimensional Maxwel’s equations
solver for aircraft wing design

• Experimental Results: Componentising a Scientific
Application – Jem3D

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-
to-Peer Technologies 18

Componentising a Scientific Application – Jem3D

numerical solver for the 3D Maxwell’s equations
modelling the time domain propagation of
electromagnetic waves
follows typical “geometric decomposition”
parallelisation

Jem3D Architecture

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-
to-Peer Technologies 19

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-
to-Peer Technologies 20

Wrapping Legacy Software

Methodology: (semi-)automatic or manual

Sample Code: GENIE Application (Environmental Modelling)

Motivation: Enable legacy applications to evolve as a part of
the scalable problem solving environments within modern
Grid systems.

Framework: Componentising existing applications along with
domain-specific metadata so that issues arising thereof can
be addressed using this metadata.

Experimental Results: Domain-Specific Metadata for Model
Validation and Performance Optimisation

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-
to-Peer Technologies 21

Domain-Specific Metadata for Model Validation–
Legacy Applications

GENIE is an interactive, legacy code for Earth system modelling. Our
hypothesis is that componentising the application and using domain-
specific metadata will help transforming it into a scalable yet efficient

software system.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 22

Summary
Productivity based on higher level of abstraction

Enables the use of new modern technologies such as
graphical composition
Source code generation
Repositories for components re-use

The use of behavioural skeletons reduces further
the development effort
Optional features

Dynamic composition validation using OCL
Static composition validation while generating final
ADL file(s)
Domain-specific validation
Dynamic verification

GIDE prototype - an Eclipse plug-in using GMF.

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 23

Conclusions and Future Research

Created the core framework using Eclipse

Robust and friendly

The full prototype of the GIDE toolset has been
completed

The hierarchical component composition results are
promising – higher development productivity and easier
software components re-use

Develop the design and development methodology
for building modern component-based software

Acknowledgements

Alessandro Basso
Alexander Bolotov
Artie Basukoski
Stavros Isaiadis
Matthieu Morel
Nikos Parlavantzas
JeyanThiyagalingam
Thomas Weigold
And other colleagues from the CoreGRID and
GridCOMP projects

Grid programming with components: an advanced COMPonent platform for an effective invisible grid 24

	� �Component-oriented Approaches for Software Development and Execution in the Extreme-scale Computing Era���Vladimir Getov�University of Westminster, London�V.S.Getov@westminster.ac.uk���HPC-10 Workshop, Cetraro, Italy�22 June 2010��
	Overview
	Background – Software Crisis
	New Challenges – Extreme-scale Computing
	Component-based Platform
	Component-based Platform Architecture
	Example Component Framework Overview
	GCM and GridCOMP
	GridCOMP Component Framework Overview
	GridCOMP Component Framework Overview
	Component-Centric Problem-to-Solution Pipeline
	Strategy: Eclipse Framework for GIDE
	Grid IDE Architecture - Core Block Diagram
	Case Study: Biometric Identification System (BIS)
	Case Study: Biometric Identification System (BIS)
	Development – IBM ZRL BIS Use Case
	Componentizing existing applications
	Componentising a Scientific Application – Jem3D
	Jem3D Architecture
	Wrapping Legacy Software
	Domain-Specific Metadata for Model Validation– Legacy Applications
	Summary
	Conclusions and Future Research
	Acknowledgements

