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Background – Software Crisis

Software vs Hardware – short-term and long-term 
issues
Software crisis – legacy code and software 
development cycle problems
Particularly difficult in fast developing and changing 
complex computer systems 
Need much shorter development cycle in order to 
be able to catch up with the pace of development of 
underlying hardware
Need methodology for quickly adapting/porting 
legacy code
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New Challenges – Extreme-scale Computing

Where ‘just more of the same’ does not work
We need to improve (in no particular order): 

degree of parallelism, 
performance,
cost, 
footprint,
power,
reliability,
programmability,
productivity, etc.

The complexity is qualitatively harder and multidimensional –
addressing this unprecedented conundrum of challenges is 
called ‘Extreme-scale Computing’.
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Component-based Platform

The new challenges require major breakthroughs in 
hardware and software – e.g. the introduction of 
multi/many core architectures. 
The higher level of complexity involves a wider 
range of requirements and resources 
Dynamic intelligent properties and flexibility 
Component-based design methodology 
To develop the design methodology of a generic 
component-based platform for both applications and 
system frameworks to have a single, seamless, 
“invisible” system image.
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Component-based Platform Architecture
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Non-functional properties

Applications

Integrated Component-based Framework

System Software

OS Kernel

Multi/Many Cores 
(homogeneous or heterogeneous)

Component
Model Tuning Interface

Platform
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Example Component Framework Overview

Starting point: Fractal component model.
The main technical features of the component framework are:

Support for primitive and composite distributed components and 
hierarchical composition.
XML based architecture description language (ADL).
Collective interfaces to comply with specific multi-way 
communication requirements.
A comprehensive runtime API.
Support for non-functional aspects such as component control, 
skeletons, and autonomy.
Advanced component scheduling/deployment via the notion of 
virtual nodes and deployment descriptors.
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GCM and GridCOMP

GCM

A new advanced Grid Component Model (GCM) 
providing high level of abstraction and specifically 
designed for large scale dynamic Grid infrastructures.
Specified within the CoreGRID Euopean project.

GridCOMP

EU project: Grid programming with COMPonents.
INRIA, ERCIM, Univ Westminster, Univ Pisa, CNR, 
IBM ZRL, Atos Origin, Grid Systems, Tsingua Univ, 
Univ Chile, Univ Melbourne
Design and implementation of a Grid component 
framework based on GCM.
Includes the development of a Grid IDE and several 
use case applications.
Middleware reference platform implementation.
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GridCOMP Component Framework Overview

Hierarchical composition: all three components can be distributed

controller

content

server
interface client

interfaces

composite component

primitive
component

primitive
component

non-functional (control)
interfaces

binding
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GridCOMP Component Framework Overview

Collective interfaces: The framework takes care of parallel 
invocations, data distribution, and synchronization.

multicast interface
(one-to-one mode)

invocation parameter

scattered parameter invocation parameter

gathercast interface

list of
aggregated parameters
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Component-Centric Problem-to-Solution Pipeline

Main issues: composition and dynamic properties –
deployment, monitoring and steering
Component-based Grid platform design methodology

Monitor &
Steer

Scheduling &
DeploymentCompositionProgramming

Model - GCM
Applications
(Algorithms)

Grid Integrated Development Environment

Metadata Description incl. ADL, etc.

Obtaining the
Solution
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Strategy: Eclipse Framework for GIDE

Simplify complexity through graphical 
composition/tools
But, allowing ONLY graphical composition 
can be inflexible and  inefficient
Support for 3 levels of Development

Graphical Composition
Based on GCM and using ADL
Source code level

Seamless integration with Eclipse
Widely supported with many potential plug-ins
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Grid IDE Architecture - Core Block Diagram

APPLICATIONS (USE CASES)
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Remove
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Case Study: Biometric Identification System (BIS)

Identify people solely on their biometric information (1:N match)

Use fingerprint biometrics

Consider multiple fingers per person to work reliably on large 
user population

Use distributed matching to achieve real-time performance

Based on business process (workflow) engine for adaptability
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Case Study: Biometric Identification System (BIS)

Grid component architecture, bindings, and deployment

1. Biometric matching 
component CompIDMatcher is 
deployed on each node

2. DB of known identities is 
distributed across the nodes

3. Identification requests are 
broadcasted via multicast 
interface I2

4. Each node searches its part of 
the DB



Development – IBM ZRL BIS Use Case
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Componentizing existing applications

• Methodology: – manual with on-going activity on identifying 
parts for automatic support and tools

• Sample Code: Jem3D – 3-dimensional Maxwel’s equations 
solver for aircraft wing design

• Experimental Results: Componentising a Scientific 
Application – Jem3D
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Componentising a Scientific Application – Jem3D

numerical solver for the 3D Maxwell’s equations 
modelling the time domain propagation of 
electromagnetic waves 
follows typical “geometric decomposition” 
parallelisation



Jem3D Architecture
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Wrapping Legacy Software

Methodology: (semi-)automatic or manual

Sample Code: GENIE Application (Environmental Modelling)

Motivation: Enable legacy applications to evolve as a part of 
the scalable problem solving environments within modern 
Grid systems.

Framework: Componentising existing applications along with 
domain-specific  metadata so that issues arising thereof can 
be addressed using this metadata. 

Experimental Results: Domain-Specific Metadata for Model 
Validation and Performance Optimisation
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Domain-Specific Metadata for Model Validation–
Legacy Applications

GENIE is an interactive, legacy code for Earth system modelling. Our 
hypothesis is that  componentising the application and using domain-
specific metadata will help transforming it into a scalable yet efficient 

software system.
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Summary 
Productivity based on higher level of abstraction

Enables the use of new modern technologies such as 
graphical composition
Source code generation
Repositories for components re-use

The use of behavioural skeletons reduces further 
the development effort
Optional features

Dynamic composition validation using OCL
Static composition validation while generating final 
ADL file(s)
Domain-specific validation 
Dynamic verification

GIDE prototype - an Eclipse plug-in using GMF.
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Conclusions and Future Research

Created the core framework using Eclipse

Robust and friendly 

The full prototype of the GIDE toolset has been 
completed

The hierarchical component composition results are 
promising – higher development productivity and easier 
software components re-use

Develop the design and development methodology 
for building modern component-based software
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