Hybrid Systems for Solving High
Performance Computing Problems

HPC Workshop
June 24, 2010, Cetraro, Italy

Janusz Kowalik and Piotr Arfukowicz

j.kowalik@comcast.net
Institute of Informatics

University Of Gdarisk Faculty of Mathematics, Physics and Informatics

Paper and Tutorial

Paper Focus: Performance considerations
Tutorial focus: CUDA programming
Paper and tutorial complement each other

Definition
= Hybrid computing is binomial. It combines sequential

processing and highly parallel processing, the SPMT
kind.

SPMT # SIMD

MasPar 1987-92

Data parallel computing

¥
T
L &

.b-ﬁ'.I

e —
& 'md

Thinking Machine 1980s

e All not successful. Limited to the SIMD parallelism.

e We needed the hybrid mode of computation.

Hybrid Co-processing

CPU < Processor |
CPU and GPU
Memory are different
>)
0 Co-P kinds of
GPU E o-Processor Orocessors
device

e CPU executes sequential components.

e Data parallel compute intensive functions are off-loaded
to the GPU device.

* For example, body of C for-loops is prime candidate.
e Auxiliary Device = Accelerator

Hybrid Computing around the world.
Are all pathsleading to CPU+GPU?

Seattle based Cray announced a supercomputer CX1000
equipped with a TESLA GPU accelerator by NVIDIA.

NVIDIA announced a new enhanced version of CUDA
3.0 for FERMI GPUs.

Jack Dongarra is working on a CUDA accelerated version
of LAPAC! Essential for HPC.

The new IBM server iDataPlex will be using NVIDIA
M2050 or M2070 accelerators.

Continued

e TOP500 (June 2010)

= #2is a Chinese super powered by NVIDIA TESLA C2050 GPUs;
Linpack speed 1.27 PFLOPs.

= #7isalsoa Chinese hybrid CPU+GPU super with GPUs by AMD.

* Intel plans to design a super based on the MIC
architecture (Many Integrated Cores). Unlike
hybrid architectures the MIC architecture is based
on the Intel standard processors.

e SGI plans a Petaflop hybrid supercomputer in one
cabinet.

e AMD is developing CPU+GPU Fusion technology

Comparing CPU with GPU:; Silicon use

core core

Control
core core

Cache Level 1

Cache Level 2

DRAM

CPU

e CPU increases speed
of computation by multiple
cores and by using cache
to reduce memory access.

nannnn

DRAM

GPU

e GPU speeds up computation
by much higher degree
of parallelism.

e More transistors are used
for processors.

GPU Memory model

Grid

Device

Block (0,0)

Block (1,0)

Shared Memory

Shared Memory

Registers I RegistersI

Thread(0,0) Thread(1,0)

Registers I Registers I

Thread(0,0) Thread(1,0)

\ 4 A 4

\ 4 A 4

HOST

A

Global Memory

A
\ 4

Constant Memory

Host-device data transfer

Each thread has its individual
register memory, fast.

Threads within a block can
communicate via shared
memory, fast.

Global memory is largest and
slowest.

Constant memory is read-only.
Low latency.

All the memories have
independent disjoint address
spaces.

Performance comparison

* Intel processor vs. Intel+TESLA C2060

Peak performance
Gflops

Peak performance / $
Gflops / $K

Peak performance / watt
Gflops / kW

30 -zl

—— 60
60

<~

0

@ CPU 1U server: 2x Intel Xeon X6660 (Nehalem) 2.68 GHz, 48GB memory, $7K, 0.66kW

@ GPU-CPU 1U server: 2x Tesla C2060 + 2x Intel Xeon X6660, 48GB memory, $11k, 1.0kW

Source: HPCwire May 2010

Scientific/engineering
applications speedups

BPU-based Acceleration of the
Benetic Algorthm
2600 x

. -

Computer Generated
Hologram on BPU - Simple

color ... 1500

— mrgle
a diikde

Stochastic Differential
Equations with CUDA

Accelerating numerical
solution of Stochastic Diff...

Parallel Algorithm for Solving
Kepler's Equation o...

Solving Kinetic Equations on
GPUSs |: Model Kinetic...
500 x

On the utility of graphics
cards to perform massiv...

500 x

Recursive APSP on the GPU

Fast k Mearest Meighbor
Search using GPU

480 x

Accelerator-Oriented
Algorithm Transformation for
£31%

Tool for Generalized
Harmonics Analysis

BPU in power system
engineenng

Efficient Computation of Sum
Products on GPUs

Efficient computation of sum-
products on GPUs thro...

Solving k-Nearest Vector
Problem on Multiple Gra...
260 %

Source: NVIDIA

Hybrid algorithm execution

e CUDA = mixed serial code and parallel kernel, all in C

= Serial C code executes in a CPU thread
= Parallel kernel C code executes in thread blocks across multiple

processing elements

‘l! Serial Code ¢:
Thread Block Thread Block Thread Block Thread Block
Parallel Kernel
KernelA<<<nBlk,nTid>>>(args) o
‘ll Serial Code

i Thread Block Thread Block Thread Block ‘Thread Block
Parallel Kernel
KernelB<<<nBlk,nTid>>>(args)

¢ SerialCode

CUDA similar to OpenMP

Master
Thread

llll llll =

Threads——

llll 1] e

Fork and
join model

Can be independent
sections in OpenMP

CUDA is more scalable to massive
parallelism

CUDA is similar to OpenMP but less
general

CUDA is strictly limited to SPMT
Single parallel function (kernel)

Both allow incremental parallelization
CUDA threads are very lightweight.

How easy to program?

Optimizing performance of CUDA
programs is hard, for example Mark
Harris’ Optimizing Parallel Reduction
in CUDA.

Speedup

: 1
e Notation: Speedup = :
= f - the parallel fraction N +(1-f)
= t - device speed/CPU speed
= max Speedup =1/ (1-f)
. MPI
e Multilevel Parallel : . *
processing GPU OpenMP
If data parallelism ‘ If unequal
present independent
““““ sections present

The hybrid computer
at the University of Gdansk

Part Description

GPU Device Tesla C1060 (NVIDIA grant)
The number of GPU cores 240

Cores internal clock 1.3 GHz

Global memory 4 GB (4294705152 bytes)
Memory bandwidth 102 GB/sec (peak, dev to dev)
Memory internal clock 800 MHz

CPU host Intel Core i7 920C

CPU host clock 2.8 GHz

Host memory 12 GB PC-1200

Many HPC algorithms are hybrid

» Conjugate Gradient Method x"*!'=x! + Aip
CGM algorithm

 The MRI problem requires solving
(x(®eRn given)

large Ax=b where A is positive

o 1. x := x(@
definite. 2. r = b - AX
. . . 3. 0=
e The formation of A involves highly ~ ;* ° ~ TII"IIZ
parallel matrix/matrix 5. while o > tol?:
i ! : A o:= TA
multiplication i Lzl X(E P)
= Computational complexity: O(n3) 8. ri=r - Ap
9. p:=r + (lIrl*/a)p
* In CGM The most compute 10. a = [|r]?
intensive operation is the o Eme
matrix/vector multiplication Ap e tileation L matrixvector
= Computational complexity: O(n2) A DCL T

3 scalar-vector
—multiplications

S+arasa' A vartars [¥ ¥ A AR)

The Example

e A key mathematical computation in MR

= Square matrix/matrix multiplication

N

width

“” " M-N=P

e . g width*width independent dot products

For width=1,000 we may have 1,000,000
width width parallel threads

Grouping of threads

Host Device
Kernel 1 Grid 1
Block (0,0) Block (1,0)
Block (0,2 || Block (1,1) |
|--Block (0,2)7]| Block (1,2) [}
Kernel 2 " J Grid 2
[VM] [
Block(1,1)
(0,0,1) (1,0,1) (2,0,1) (3,0,1)
Thread Thread Thread Thread
(0,0,0) (1,0,0) (2,0,0) (3,0,0)
Thread Thread Thread Thread
(0,1,0) (1,1,0) (2,1,0) (3,1,0)

e Grid contains blocks (1D or 2D).

e Blocks contain threads
(1D, 2D or 3D).

e Limitation:
= Up to 512 threads per one block.

" |f we use only one block and
each element of P is
calculated by one thread the
largest matrix we can handle
Is 16x16 since 256 <512.

" For larger matrices we have
to use multiple blocks.

Tiling matrices to utilize shared memory

e e The matrices are divided
{Nd, | Nd, : : :
i into multiple tiles and each
| Nd,, [Nd, tile of P is assigned to one
‘NG, | NG, block of threads.
s e This way the number of
L threads per block does not
______________________ >
Mgy M [t | Wi | P | Pt exceed 512 and every
element of P is calculated
o M| Ve [Mea }d“\) by one thread
* The size of the tile is
chosen so data can fit into

the shared memory.

Multiplying efficiently large matrices
requires Tiling

1e+04

Te+02 |

1e+00 F

Time [s]

le-04

1e-06

1e-08

Relative Performance MatMult

le-02

CPU ——
Tesla GPU
Tesla GPU (shared) —«—

Exponential scales

Max Size speedup
Global mem 10
Shared mem 1,000

Matrix SIZE

2 4 8 16 32 64 128 256 512 1024 2048 4096

Hybrid computer performance

* From the performance perspective the
major limitation of hybrid computation
is the GPU global memory bandwidth.

* LOAD BALANCING

e SPMT but if-then-else instruction can split
the execution path. This may cause a longer
execution time and loss of performance.

Coalescing global memory access

Small example of the memory pattern for coalescing global
memory access that accelerates processing

Information residing in shared memory does not need coalescing
to achieve high speed data access.

Global memory access takes place when the same
instruction for all threads in a warp accesses consecutive global
memory locations.

Access

In this case hardware combines diecton in
(coalesces) all accesses into one
consolidated and faster access.

Load iteration 1 Load iteration 2
T(0) T(1) T(2) T(3)||T(0) T(1) T(0) T(3)

MG,G M"E,G M2,0 M

Summary

e Hybrid computing is a paradigm discontinuity.
e IMAGINE A WORLD WHERE EVERYBODY HAS AN
ACCESS TO PERSONAL SUPERCOMPUTING

" Every researcher, information technology worker, every
academic teacher has a Teraflop Computer on her desk.

* This calls for resetting our research agenda

* Create new programming methods for hybrid
computing

* Revisit parallel software packages (LAPACK; Jack D.)
algorithms and related mathematics

Literature and References

[1] Calvin Lin and Lawrence Snyder, Principles of Parallel
Programming, Pearson International Edition, Addison
Wesley 20009.

[2] David B.Kirk and Wen-mei W.Hwu, Programming Massively
Parallel Processors, Morgan Kaufmann, Elsevier 2010.

[3] The CUDA Programming Guide, NVIDIA.

[4] Mark Harris, Optimizing Parallel Reduction in CUDA,
NVIDIA, 2007.

[5] Liang Z.P. and Lauterbur P., Principles of Magnetic
Resonance Imaging, A signal processing perspective,
Wiley, New York, 1999.

THE END THANK YOU

Timing data 1

e SINGLE CPU Core i7 64bit 2.8GHz
TIME

SIZE
2

4

8

16
32
64
128
256
51.2
1024
2048
4096

NOO O W W wwwul NP O

.743286€-08
.494033e-07
.512598e-07
.197445e-06
.879064e-05
.382112e-04
.561758e-03
.198436€e-02
.056566e-01
.015563e+00
.564798e+01
.524644e+02

RUN COUNT
4096

2048

1024

512

256

126

64

32

16

N B oo

Times in seconds
Max time=752 sec

Timing Data 2

* TESLA GPU 240 Cores 1.3GHz GLOBAL MEMORY
TIME

SIZE
2

4

8

16
32
64
128
256
512
1024
2048
4096

OO0 PR, FRPEPNMNNMNMNMNERPUWDNNDN

.896618e-05
.955391e-05
.000104e-05
.449054e-05
.006258e-04
.920939e-04
.319826€e-03
.673443e-02
.333204e-01
.062235e+00
.486859e+00
.796577e+01

RUN COUNT
4096

2048

1024

512

256

126
64 For the largest

32 size matrix tested
16 the speedup is

about 10.

N B oo

Timing data 3

e TESLA GPU 240 Cores 1.3GHz SHARED MEM
TIME

SIZE
2

4

8

16
32
64
128
256
512
19024
2048
4096

OO R, VM NWNEREPERPRERER

.689454e-05
.807400e-05
.638880e-05
.720564e-05
.136294e-05
.029413e-05
. 786980e-05
.657310e-04
.124511e-03
.163225e-02
.727042e-02
.912488e-01

RUN COUNT
4096

2048

1024

512

256

126

o For the largest size

32)
i matrix tested

the speedup is
about 1,000

N B oo

Workshop vs. conference

e Conference
= We report what we have done
" Indicate some future research plans
" Few short discussions and panels

* Workshop
= We discuss ideas to be explored
= Mainly discussions and panels
= Reports from small working groups

