
The Future of Many Core Computing: The Future of Many Core Computing:
A tale of two processors

Tim Mattson
Intel Labs

11

Disclosure

• The views expressed in this talk are those of the
speaker and not his employer.

• I am in a research group and know nothing about
Intel products. So anything I say about them is
highly suspect highly suspect.

• This was a team effort, but if I say anything really
stupid, it’s all my fault … don’t blame my
collaborators.

22

A common view of many-core chips

An Intel e
Exec’s slide
from
IDF’2006IDF 2006

33

Challenging the sacred cows

Assumes cache
coherent shared

• Is that the right choice?
– Most expert programmers do not

f ll d t d l d address space! fully understand relaxed
consistency memory models
required to make cache coherent
architectures work.

Shared
Cache

Local
Cache

Streamlined

– The only programming models
proven to scale non-trivial apps to
100’s to 1000’s of cores all based

 di t ib t d Streamlined
IA Core on distributed memory.

– Coherence incurs additional
architectural overhead

… IA cores optimized for multithreading

44

Isn’t shared memory programming
easier? Not necessarily.y

E Extra work upfront, but easier
optimization and debugging means ffort

optimization and debugging means
overall, less time to solution

Message passing

Time

i iti l ll li ti b
But difficult debugging and

Effort

initial parallelization can be
quite easy

Multi-threading

gg g
optimization means overall

project takes longer

Time

Multi-threading

55
*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

The many core design challenge
• Scalable architecture:• Scalable architecture:

– How should we connect the cores so we can scale as far as we
need (O(100’s to 1000) should be enough)?

• Software:
C “ l ” i f h k – Can “general purpose programmers” write software that takes
advantage of the cores?

– Will ISV’s actually write scalable software?
• Manufacturability:y

– Validation costs grow steeply as the number of transistors grows.
Can we use tiled architectures to address this problem?
– For an N transistor budget … Validate a tile (M transistors/tile) and the

connections between tiles. Drops validation costs from KO(N) to
K’O(M) (i K K’ b l)K’O(M) (warning, K, K’ can be very large).

Intel’s “TeraScale” processor
research program is addressing theseresearch program is addressing these
questions with a series of Test chips

… two so far.
48 core SCC

66

80 core Research
processor

48 core SCC
processor

Agenda

• The 80 core Research Processor
– Max FLOPS/Watt in a tiled architectureMax FLOPS/Watt in a tiled architecture

• The 48 core SCC processor
– Scalable IA cores for software/platform researchScalable IA cores for software/platform research

77

Agenda

• The 80 core Research Processor
– Max FLOPS/Watt in a tiled architectureMax FLOPS/Watt in a tiled architecture

• The 48 core SCC processor
– Scalable IA cores for software/platform researchScalable IA cores for software/platform research

Sriram R. Vangal, Jason Howard, Gregory Ruhl, Member, Saurabh Dighe, Howard Wilson, James Tschanz, David Finan, Arvind
Singh Member Tiju Jacob Shailendra Jain Vasantha Erraguntla Clark Roberts Yatin Hoskote Nitin Borkar and S BorkarSingh, Member, Tiju Jacob, Shailendra Jain, Vasantha Erraguntla, Clark Roberts, Yatin Hoskote, Nitin Borkar, and S. Borkar,
"An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS,"
IEEE Journal of Solid-State Circuits, Vol. 43, No. 1, Jan 2008.

Tim Mattson, Rob van der Wijngaart, Michael Frumkin,
“Programming Intel's 80 core terascale processor ”

88

“Programming Intel's 80 core terascale processor,”
Proc. of the 2008 ACM/IEEE conference on Supercomputing , SC08, Austin Texas, Nov. 2008

Acknowledgements

• Implementation
– Circuit Research Lab Advanced Prototyping team (Hillsboro, OR

and Bangalore India)and Bangalore, India)
• PLL design

– Logic Technology Development (Hillsboro, OR)
P k d i• Package design
– Assembly Technology Development (Chandler, AZ)

• The software team
– Tim Mattson, Rob van der Wijngaart (Intel)
– Michael Frumkin (then at Intel, now at Google)

A special thanks to our “optimizing compiler” … Yatin
Hoskote, Jason Howard, and Saurabh Dighe of
Intel’s Microprocessor Technology Laboratory.

99

Intel s Microprocessor Technology Laboratory.

Intel’s 80 core terascale processor
Die Photo and Chip DetailsDie Photo and Chip Details

12.64mm
I/O Area

single tile

12.64mm
I/O Area

single tile
• Basic statistics:

– 65 nm CMOS processg
1.5mm

2.0mm

g
1.5mm

2.0mm

– 100 Million transistors in 275 mm2

– 8x10 tiles, 3mm2/tile
– Mesosynchronous clock

.7
2m

m
.7

2m
m – 1.6 SP TFLOP @ 5 Ghz and 1.2 V

– 320 GB/s bisection bandwidth
– Variable voltage and multiple sleep

21
.

21
.

states for explicit power management

PLL TAPPLL TAP
1010

I/O Area
PLL TAP

I/O Area
PLL TAP

We’ve made good progress with the hardware:
Intel’s 80 core test chip (2006)p ()

2KB DATA
MEMORY

3KB INSTR.
MEMORY

COMPUTE CORE:
2 FLOATING

5 PORT
ROUTER

POINT ENGINES

1111 This is an architecture concept that may or may not be reflected in future products from Intel Corp.

The “80-core” tile
Mesochronous Interface

Crossbar Router
M

SI
N

T
39

39

20 GB/s

M
SIN

T

MSINT
2 Kbyte Data Memory
(512 SP words)40 GB/s

2KB Data memory (DMEM)

64 64

64

96

39
MSINT

5 port router
for a 2D

M
)

6-read, 4-write 32 entry RF

32
64

32

R
IB

32 32

mesh and 3D
stacking

t.
m

em
or

y
(IM

E

96

x

+

x

+

3K
B

 In
st

FPMAC0

Normalize

32

FPMAC1

32

Normalize
3 Kbyte Instr.
Memory (256
96 bit instr)

1212

Processing Engine (PE)

FPMAC0 FPMAC1

Tile
2 single precision FPMAC units

)

Programmer’s perspective
• 8x10 mesh of 80 cores
• All memory on-chip

– 256 instructions operating256 instructions operating
– 512 floating point numbers.
– 32 SP registers, two loads per cycle per tile

• Compute engine• Compute engine
– 2 SP FMAC units per tile → 4 FLOP/cycle/tile
– 9-stage pipeline

• Communication• Communication
– One sided anonymous message passing into instruction or data

memory
• Limitations:• Limitations:

– No division
– No general branch, single branch-on-zero (single loop)

No wimps allowed! i e No compiler Debugger OS I/O

1313

– No wimps allowed! … i.e. No compiler, Debugger, OS, I/O …

SP = single precision, FMAC = floating point multiply accumulate, FLOP = floating point operations

Full Instruction Set
MULT Multiply operands FP

LOAD, STORE Move a pair of floats between register file & data memory.

ACCUM Accumulate with previous result

Loa
P

U

LOADO, STOREO,
OFFSET

Move a pair of floats between the register file and data
memory at address plus OFFSET.

ad
/

S
to

re

SENDI[H|A|D|T] Send instr. header, address, data, and tail

SENDD[H|A|D|T] Send Data header, address, data, and tail

S
N

D
/

WFD Stall while waiting for data from any tile.

STALL Stall program counter (PC), waiting for a new PC.

/
R

C
V

BRNE, INDEX INDEX sets a register for loop count. BRNE branches while
the index register is greater than zero

JUMP Jump to the specified program counter address

P
rog

ram
flow

1414

NAP Put FPUs to sleep

WAKE Wake FPUs from sleep

S

leep

Instruction word and latencies

FPU (2) SLEEPLOAD/STORE SND/RCV PGM FLOW

• 96-bit instruction word, up to 8 operations/cycle

Instruction Type Latency (cycles)

FPU 9

LOAD/STORE 2

SEND/RECEIVE 2

JUMP/BRANCH 1

NAP/WAKE 1

1515

What did we do with the chip?
• 4 applications kernelspp

– Stencil
– 2D PDE solver (heat diffusion equation)

using a Gauss Seidel algorithm

C
om

– SGEMM (Matrix Multiply)
– C = A*B with rectangular matrices

m
m

uni

– Spreadsheet
S th ti b h k d

ication

– Synthetic benchmark … sum dense
array of rows and columns (local sums
in one D, reduction in the other D)

 P
atter

Th k l h d d d i bl Th k l h d d d i bl

– 2D FFT
– 2D FFT of dense array on an 8 by 8

subgrid.

rns

1616

Th k l h d d d i bl These kernels were hand coded in assembly
code and manually optimized. Data sets

sized to fill data memory.

Programming Results
Application Kernel ImplementationApplication Kernel Implementation

Efficiency
z

Actual Theoretical

1

1.2

1.4

@
 4

.2
7

G
H

z

Peak = 1.37

0 6

0.8

1

n
TF

LO
PS

 @

0.2

0.4

0.6

le
 P

re
ci

si
on

0

Stencil SGEMM Spread
Sheet

2D FFT

Si
ng

1717

Theoretical numbers from operation/communication
counts and from rate limiting bandwidths.

Sheet

1.07V, 4.27GHz operation 80 C

Why this is so exciting!

First TeraScale* computer: 1997 First TeraScale% chip: 2007

10 years
later

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
Intel’s 80 core teraScale Chip

1 CPU
9000 CPUs

one megawatt of electricity.

1600 f t f fl

1 CPU

97 watt

275 mm2

1818

1600 square feet of floor space.

Source: IntelSource: Intel

%Single Precision TFLOPS running stencil
*Double Precision TFLOPS running MP-Linpack

A TeraFLOP in 1996: The ASCI TeraFLOP Supercomputer,
Proceedings of the International Parallel Processing Symposium (1996), T.G. Mattson, D. Scott and S. Wheat.

Lessons: Part 1

• What should we do with our huge transistor counts
– A fraction of the transistor budget should be used for on-die

memory.
– The 80-core Terascale Processor with its on-die memory has

a 2 cycle latency for load/store operations … this compares
to ~100 nsec access to DRAM.

– As core counts increase, the need for on-chip memory will , p y
grow!

– For Power/Performance, specialized cores rule!
• What role should Caches play?

Thi N C d i l k d h – This NoC design lacked caches.
– Cache coherence limits scalability:

– Coherence traffic may collide with useful communication.
– Increases overhead ... Due to Amdahl’s law, A chip with on the Increases overhead ... Due to Amdahl s law, A chip with on the

order of 100 cores would be severely impacted by even a small
overhead ~1%

1919

Lessons: Part 2
• Minimize message passing overhead.

– Routers wrote directly into memory without interrupting
computing … i.e. any core could write directly into the
memory of any other core. This led to extremely small memory of any other core. This led to extremely small
comm. latency on the order of 2 cycles.

• Programmers can assist in keeping power low if
sleep/wake instructions are exposed and if switching
latency is low (a couple cycles) latency is low (~ a couple cycles).

• Application programmers should help design chips• Application programmers should help design chips
– This chip was presented to us a completed package.
– Small changes to the instruction set could have had a large

impact on the programmability of the chip. p p g y p
– A simple computed jump statement would have allowed

us to add nested loops.
– A second offset parameter would have allowed us to

program general 2D array computations

2020

program general 2D array computations.

Agenda

• The 80 core Research Processor
– Max FLOPS/Watt in a tiled architectureMax FLOPS/Watt in a tiled architecture

• The 48 core SCC processor
– Scalable IA cores for software/platform researchScalable IA cores for software/platform research

J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom, F. Pailet, S. Jain, T.
Jacob, S. Yada, S. Marella, P. Salihundam, V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel, K.
Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De1, R. Van Der Wijngaart, T. Mattson, , , , , , j g , ,
"A 48-Core IA-32 Message-Passing Processor with DVFS in 45nm CMOS”,
Proceedings of the International Solid-State Circuits Conference, Feb 2010

Timothy G. Mattson, Rob F. Van der Wijngaart, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick
Kenned Jason Ho a d S i am Vangal Nitin Bo ka G eg R hl Sa abh Dighe

2121

Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, Saurabh Dighe
“The 48 core SCC Processor: A programmers view”
Submitted to Proc. of the 2010 ACM/IEEE Conference on Supercomputing

Acknowledgements
• SCC Application software:• SCC Application software:

RCCE library and apps and
HW/SW co-design

Rob Van der Wijngaart
Tim Mattson

D l t l (i d MKL) P t i k K d

• SCC System software:

Developer tools (icc and MKL) Patrick Kennedy

Management Console software and
BareMetalC workflow

Michael Riepen

Linux for SCC Thomas LehnigLinux for SCC Thomas Lehnig
Paul Brett

System Interface FPGA development Matthias Steidl

TCP/IP network drivers Werner Haas

• And the HW team that worked closely with the SW group:

2222

• And the HW-team that worked closely with the SW group:

Jason Howard, Yatin Hoskote, Sriram Vangal, Nitin Borkar, Greg Ruhl

SCC full chip

26.5mm

•24 tiles in 6x4 mesh with 2 cores per tile (48 cores total).

Technology 45nm
ProcessDDR3 DDR3

SCC
TILE

Interconnect 1 Poly, 9
Metal (Cu)

Die: 1 3B

MC
DDR3

MC

Transistors Die: 1.3B,
Tile: 48M

Tile Area 18.7mm221.4mm

PLL +
I/O JTAG

SCC
TILE

Die Area 567.1mm2
DDR3

MC
DDR3

MC

2323

VRC System Interface + I/O

SCC Dual-core Tile

L2$
+

• 2 P54C cores (16K L1$/core)
• 256K L2$ per core

C
C
F

P54c+
CC

F

• 8K Message passing buffer
• Clock Crossing FIFOs b/w Mesh

interface unit and Router
GCUMIU MPB

C

Router GCUMIU MPB

C
C

F interface unit and Router

P54cL2$
+ P54cL2$

+

• Tile area 18.7mm2

• Core are 3.9mm2

• Cores and uncore units @1GHz
CC +

CC
Cores and uncore units @1GHz

• Router @2GHz

2424

Hardware view of SCC
48 P54C i 6 4 h ith 2 til• 48 P54C cores in 6x4 mesh with 2 cores per tile

• 45 nm, 1.3 B transistors, 25 to 125 W
• 16 to 64 GB total main memory using 4 DDR3 MCs• 16 to 64 GB total main memory using 4 DDR3 MCs
• 2 Tb/s bisection bandwidth @ 2 Ghz

P54C 256KB TileP54C
(16KB

each L1)

CC

256KB
L2 Traffic

GenRR
Tile Tile

Tile Tile

Tile Tile

Tile
R

Tile
R

Tile Tile

Tile
R

Tile
RMC MC

CC
P54C FSB Mesh

I/F
To

RouterCC

Message

Tile Tile

TileTile TileTile

Tile Tile

Tile Tile

Tile Tile

R RR RR R

RRR RR R

P54C
(16KB

each L1)

256KB
L2

Message
Passing
BufferTileTile

R
Tile

R
Tile

R
Tile

R
Tile

R

R RR RR R

RMC MC

2525
R = router, MC = Memory Controller, P54C = second generation Pentium core, CC = cache cntrl.

Bus to
PCI

SCC system overview

 tile tile

til til

 tile tile

M M

R R

til tiltil til

 tile tile
R R RRPLL

 tile tile

 tile tile

MCMC

D
IM

M

D
IM

M

R

R

R

R

 tile tile tile tile

 tile tile tile tile

R

R

R

R

R

R

R

R JTAG
I/O JTAG

BUS
 tile tile

MCMC

D
IM

M

D
IM

M

System Interface

R R
 tile tile tile tile

R R RR

SCC die

BUS

VRC

System
FPGA

SCC dieVRC

PCIe
Management Console PC

2626
26

Power breakdown

Full Power Breakdown
Total -125.3W

C

Low Power Breakdown
Total - 24.7W

Cores
69%MC &

DDR3-
800
19%

MC &
DDR3-

800
69%

19%

Global CoresRouters
Routers

& 2D-
mesh
10%

Global
Clocking

2%

Cores
21%& 2D-

mesh
5%

Global
Clocking

5%

Clocking: 1.9W Routers: 12.1W
Cores: 87.7W MCs: 23.6W

Clocking: 1.2W Routers: 1.2W
Cores: 5.1W MCs: 17.2W

Cores-125MHz, Mesh-250MHz, 0.7V, 50°CCores-1GHz, Mesh-2GHz, 1.14V, 50°C

2727

, , ,, , ,

27

SCC Address spaces
• 48 x86 cores which use the x86 memory model for Private DRAM

On-chip
Off-chip Memory

L1$, MPBT
Reg file, no$

48 x86 cores which use the x86 memory model for Private DRAM

p

Where is the physical Memory Cache utilization

Shared off-chip DRAM (variable size)

CPU_0

L1
$

L2
$Private

DRAM
CPU_47

L1
$

L2
$Private

DRAM
…

t&s t&s

$$

DRAM $$

DRAM

Shared on-chip Message Passing Buffer (8KB/core)

2828

Shared on chip Message Passing Buffer (8KB/core)

t&s Shared test and set register

SCC Memory Management
• Memory is managed through a Look up Table (LUT) address • Memory is managed through a Look-up Table (LUT) address

translation … each core manages its own programmable LUT.

• LUT Table divides a core’s 4 GByte

PCI hierarchy

FPGA registers
APIC/boot 256MB

M p to LUT

• LUT Table divides a core s 4 GByte
memory space into 256 16MB pages:
– Control registers including voltage

Regulator control (VRC).
Sh d b ll PCI hierarchy

Shared Maps to MC1
Maps to MC3
Maps to VRCs
Maps to LUT– Shared space seen by all cores …

through each memory controller
(MC0 to MC3)

– Private DRAM (MC0) Shared

512MB

Maps to MPBs
Maps to MC2
Maps to MC1()

– Message Passing Buffer (MPB)
• Private DRAM follows regular P54C

memory model (L1$, L2$, DRAM).
512MB
Private Maps to MC0• There is NEVER cache coherence

between cores …

2929 MC# = one of the 4 memory controllers, MPB = message passing buffer, VRC’s = Voltage Regulator control

Impact of Core Position on Memory Performance
• Stream benchmark mapped to one core and MC channelStream benchmark mapped to one core and MC channel

– Position of core is varied
– Report relative reduction in usable memory bandwidth

13 0% 15 8% 19 8% 23 0% 25 5% 28 7%

• Tile 533 MHz, Router 800 MHz, Memory controller 800 MHz
– Up to 13% variation within quadrant of Memory controller (iMC)

-13.0% -15.8% -19.8% -23.0% -25.5% -28.7%
iMC -8.3% -13.0% -15.8% -19.8% -23.0% -25.5% iMC

-5.3% -8.3% -13.0% -15.8% -19.8% -23.0%
iMC 0 0% 5 3% 8 4% 13 0% 15 8% 19 8% iMCiMC 0.0% -5.3% -8.4% -13.0% -15.8% -19.8% iMC

• Tile 800 MHz, Router 1600 MHz, Memory controller 800 MHz
Up to 8% variation within quadrant of Memory controller

-8.0% -8.9% -11.6% -14.9% -15.6% -18.0%
iMC -4.2% -8.0% -8.9% -11.6% -14.9% -15.6% iMC

– Up to 8% variation within quadrant of Memory controller

-1.0% -4.2% -8.0% -8.8% -11.6% -14.9%
iMC 0.0% -1.0% -4.2% -8.0% -8.8% -11.6% iMC

Source: Intel, SCC workshop, Germany March 16 2010

SCC’s message passing library: RCCE
RCCE is a compact lightweight communication • RCCE is a compact, lightweight communication
environment.
– SCC and RCCE were designed together side by side:

– … a true HW/SW co-design project.

• RCCE is a research vehicle to understand how
message passing APIs map onto many core chipsmessage passing APIs map onto many core chips.

• RCCE is for experienced parallel programmers willing
to work close to the hardware.

• RCCE Execution Model:
– Static SPMD:

– identical UEs created together when a program starts (this is a identical UEs created together when a program starts (this is a
standard approach familiar to message passing programmers)

3131

UE: Unit of Execution … a software entity that advances a
program counter (e.g. process of thread).

Msg. Pass. (RCCE) Configuration
• 48 x86 cores the x86 memory model for Private DRAM

On-chip
Off-chip Memory

L1$, MPBT
Reg file, no$

• 48 x86 cores, the x86 memory model for Private DRAM

p

• RCCE is a message passing library and thinks of the chip as a
distributed memory platform … we have no use for shared
DRAM d i t d h i i t DRAM

Shared off-chip DRAM (variable size)

DRAM and instead emphasize private DRAM.

CPU_0

L1
$

L2
$Private

DRAM
CPU_47

L1
$

L2
$Private

DRAM
…

t&s t&s

$$

DRAM $$

DRAM

Shared on-chip Message Passing Buffer (8KB/core)

3232

Shared on chip Message Passing Buffer (8KB/core)

t&s Shared test and set register

Msg. Pass. (RCCE) Configuration
• 48 x86 cores the x86 memory model for Private DRAM

On-chip
Off-chip Memory

L1$, MPBT
Reg file, no$

• 48 x86 cores, the x86 memory model for Private DRAM

p

• RCCE is a message passing library and thinks of the chip as a
distributed memory platform … we have no use for shared
DRAM d i t d h i i t DRAM

Shared off-chip DRAM (variable size)

DRAM and instead emphasize private DRAM.
To bettern understand how the Memory
works on SCC, we will take a closer look

CPU_0

L1
$

L2
$Private

DRAM
CPU_47

L1
$

L2
$Private

DRAM
…

t&s t&s

,
at how RCCE is implemented.

$$

DRAM $$

DRAM

Shared on-chip Message Passing Buffer (8KB/core)

3333

Shared on chip Message Passing Buffer (8KB/core)

t&s Shared test and set register

How does RCCE work? Part 1
Message passing bufferMessage passing buffer
memory is special … of
type MPBT

Cached in L1, L2Cached in L1, L2
bypassed. Not coherent
between cores

Data cached on read, not

Consequences of MPBT properties:

,
write. Single cycle op to
invalidate all MPBT in L1
… Note this is not a flush

 If data changed by another core and image still in L1, read returns stale data.
 Solution: Invalidate before read.

 L1 has write-combining buffer; write incomplete line? expect trouble!
 Solution: don’t. Always push whole cache lines

 If image of line to be written already in L1, write will not go to memory.
 Solution: invalidate before write.

3434

Discourage user operations on data in MPB. Use only as a data
movement area managed by RCCE … Invalidate early, invalidate often

How does RCCE work? Part 2
Treat Msg Pass Buf (MPB) as 48 smaller buffers one per core• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
f th b i i f ’ MPBfrom the beginning of a core’s MPB.

…
0 1 2 473

A = (double *) RCCE_malloc(size)
Called on all cores so any core can

Flags allocated
and used to
coordinate

3535

2

Called on all cores so any core can
put/get(A at Core_ID) without error-
prone explicit offsets

coordinate
memory ops

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.The foundation of RCCE is a one sided put/get interface.

• Symmetric name space … Allocate memory as a collective and
put a variable with a given name into each core’s MPB.

t& t&

CPU_0

L1
$

L2
$Private

DRAM

t&s

CPU_47

L1
$

L2
$Private

DRAM

t&s

P t(A 0)Put(A,0)

Get(A, 0)

3636

0 47…
… and use flags to make the put’s and get’s “safe”

The RCCE library
• RCCE API provides the basic message passing • RCCE API provides the basic message passing

functionality expected in a tiny communication
library:

– One + two sided interface (put/get
+ send/recv) with synchronization
flags and MPB management flags and MPB management
exposed.
– The “gory” interface for

programmers who need the most

put() get()

programmers who need the most
detailed control over SCC

– Two sided interface (send/recv) Two sided interface (send/recv)
with most detail (flags and MPB
management) hidden.
– The “basic” interface for typical send() recv ()

3737

yp
application programmers.

send() recv ()

Linpack and NAS Parallel benchmarks
1. Linpack (HPL): solve dense system of linear equations

x-sweep

p () y q
– Synchronous comm. with “MPI wrappers” to simplify porting

2. BT: Multipartition decomposition

w
ee

p

p p
– Each core owns multiple blocks (3 in this case)
– update all blocks in plane of 3x3 blocks
– send data to neighbor blocks in next plane

z-
sw

g p
– update next plane of 3x3 blocks

3. LU: Pencil decomposition
– Define 2D-pipeline process.

4

– await data (bottom+left)
– compute new tile
– send data (top+right) 4

4

4

4

3 3

3

2

3838

4
4

3
32 21

Third party names are the property of their owners.

Linpack, on the Linux SCC platform
• Linpack (HPL)* strong scaling results:

GFLOPS # f f fi d i bl (1000)

4

– GFLOPS vs. # of cores for a fixed size problem (1000).
– This is a tough test … scaling is easier for large problems.

3

3.5 Matrix order 1000

2

2.5

G
Fl

op
s • Calculation Details:

– Un-optimized C-BLAS
– Un-optimized block size (4x4)

0 5

1

1.5
Un optimized block size (4x4)

– Used latency-optimized whole
cache line flags

– Performance dropped ~10%
with memory optimized 1-bit
flags

0

0.5

0 10 20 30 40 50

#

flags

* These are not official LINPACK benchmark results

3939

cores
SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official LINPACK benchmark results.

Third party names are the property of their owners.

LU/BT NAS Parallel Benchmarks, SCC

2000

Problem size: Class A, 64 x 64 x 64 grid*

1600

800

1200

M
Fl

op
s LU

BT

400 • Using latency
optimized,

0
0 10 20 30 40

#

p ,
whole cache
line flags

* These are not official NAS Parallel benchmark results

4040

cores
SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official NAS Parallel benchmark results.

Third party names are the property of their owners.

Power and memory-controller domains

Voltage

SCC package

Memory

Power ~ F V2

Power Control domains Tile TileTile TileTile Tile

SCC package

–Power Control domains
(RPC):

–7 voltage domains … 6 4-
tile blocks and one for on-

MCMC R
Tile TileTile

R
Tile

R

R
Tile

R
Tile

R

R R RR

RR
die network.
–1 clock divider register per
tile (i.e. 24 frequency
d i)Tile

Tile

Tile

Tile
R

Tile

Tile
R

Tile

Tile
R

Tile

Tile

R
Tile

Tile
R R

domains)
–One RPC register so can
process only one voltage
request at a time; other

MC MC
TileTile

R
Tile

R
Tile

Bus to
PCI

Tile

R
Tile

RRR

4141

request at a time; other
requestors block

Frequency

PCI

RCCE Power Management API
• RCCE power management emphasizes safe control:

V/GHz changed together within each 4-tile (8-core)
power domainpower domain.
– A Master core sets V + GHz for all cores in domain.

– RCCE_iset_power():
– Input a frequency divisor (2 to 16) setting, and this will set

the min voltage consistent with that frequency
– RCCE_wait_power():

– returns when power change is done
– RCCE_set_frequency():

– Set the frequency divisor (2 to 16)

• Power management latencies
– V changes: Very high latency, O(Million) cycles.

GHz changes: Low latency O(few) cycles

4242

– GHz changes: Low latency, O(few) cycles.

Power management test
• A three tier master worker hierarchy • A three-tier master-worker hierarchy,

– one overall master, one team-lead per power domain, Team-
members (cores) to do the work.

• Workload: A stencil computation to solve a PDE

Independent tasks
(all different sizes)Overall data space

• Workload: A stencil computation to solve a PDE.

(all different sizes)Overall data space

Dependent, synchronized
subtasks; exchange
i f d h

xch xch xch

4343

interface data each
iteration Team

member
Team

member
Team

member
Team
lead

4444

4545

Conclusions
• RCCE software works• RCCE software works

– RCCE’s restrictions (Symmetric MPB memory model and blocking
communications) have not been a fundamental obstacle

– Functional emulator is a useful development/debug devicep g
• SCC architecture

– The on-chip MPB was effective for scalable message passing
applications

f ll d k b ’– Software controlled power management works … but it’s
challenging to use because (1) granularity of 8 cores and (2) high
latencies for voltage changes

– The Test&set registers (only one per core) will be a bottleneck. g (y p)
– Sure wish we had asked for more!

• Future work
– Add shmalloc() to expose shared off-chip DRAMM (in progress).
– Move resource management into OS/drivers so multiple apps can

work together safely.
– We have only just begun to explore power management

capabilities we need to explore additional usage models

4646

capabilities … we need to explore additional usage models.

