,1»‘1*?% intel)
& .

OpenCL

Design Patterns and the Quest for
General Purpose Parallel
Programming

Tim Mattson
Intel Labs
timothy.g.mattson@intel.com

OpenMP

Disclosure

m The views expressed in this talk are those of the
speaker and not his employer.

m | am in a research group and know nothing about
Intel products. So anything | say about them is
highly suspect.

m This was a team effort, but if | say anything really
stupid, it’s all my fault ... don’t blame my
collaborators.

" J
Computing trends ...
Top 500 supercomputers: total number of processors (1993-2010)

6000000

5000000
4000000
3000000
2000000
1000000
0O +=r=—r—1=—"1" T T | | I T |

o O

o

o O

(Q\

Source: the “June lists” from www.top500.0rg 3

2008 _

2

2006 _
2007 _

1993
1994
1995
1996
1997
1998 |
1999 |
2000 1
2001 N
2002 N
2003 W
2004 W
2005 -

" N (el

The culprit ... many core chips. And its getting worse!

- 48 cores
l' 4

‘ 24? cdréé

T T
- .

-

]
i
i
]
]
4
*
i
i
1
1
1
i
i
i
i
]
1

L]
[
[
/
1
L)
L]
¥
Ii

Intel SCC research NVIDIA Tesla C1060

chip

31 party names are the property of their owners. IBM Cel | _
Source: SC09 OpenCL tutorial

4

Our HW future iIs clear:

— CPU(s)

— GPU(s)

— DSP processors
— ... other?

e And SOC trends are putting
this all onto one chip

The future belongs to heterogeneous, many core SOC
as the standard building block of computing

GMCH = graphics memory control hub, ICH = Input/output control hub SOC = system on a chip

e A modern platform has:

"
The many core challenge

m A harsh assessment ...

We have turned to multi-core chips not because of the success of our
parallel software but because of our failure to continually increase
CPU frequency.

(i

m Result: a fundamental and dangerous (for the computer
Industry) mismatch

Parallel hardware is ubiquitous.
Parallel software is rare

m The Many Core challenge ...

m Parallel software must become as common as parallel
hardware

Programmers need to make the best use of all the available
resources from within a single program:

s One program that runs close to “hand-tuned” optimal
performance) on a heterogeneous platform.
6

Slides from 2005 ...

A common response.

Eind A Good parallel programming model

Meodels from the golden age of parallel pregramming (~95)
; Third party namae are the proparty of thalr ownars.

Fh0|ce over_load: iael
;TOO many DptIOI"IS Can hUI‘t you L—-ﬂ'

» The Draeger Grocery Store o
: experiment consumer choice :
i —Two Jam-displays with coupon’s
: for purchase discount.
- 24 different Jam's
: - 6 differentJam’s
- How many stopped by to try
samples at the display?

Percentage
]

~bought jam?

g g g 5

24 G

Ff'rngrammers don't need a glut of options __. just give us something that works OK
an every platform we care about. Give us a decent standard and we'll do the rest

The findinge from this study ehow that an extensive array of cptions can at firet seem highly appsaling to
coneumers, yet can reguce thelr subeequent motivation to purchaes the proguct.

Iyengar, Bnsena L, SLeOpsr MAark (2000, Winen oholes Ic dematvating: Gan ane degredoo mush of 2 good fIng? Journal af Parsanatin
and Saclal Psychalogy, T8 #86-1008.

- Of those who "tried”, howmany | | | = ® W | |

Leave it to computer
scientists and they’ll respond
to the many core challenge
by creating lots of new
languages ...

... and ISVs respond by
running away ... choice
overload is real

|
E/lly optimistic view from 2005 ...

o

* ;
~ Parallel Programming API's today
~ = Thread Libraries

—Wins2 API
— POSIX threads.

~ m Compiler Directives
s OpenMP - portable shared memory parallelism.

= Message Passing Libraries

= MBI - message .passing. ..

We’ve learned our
lesson ... we emphasize
a small number of
Industry standards

n Cumlng soon ... a parallel Ianguage ﬁ::r managed

runtimes? Java or X107?

We don’t want to scare away the programmers ...
new APL'language if we can’t get the job done by fixing an

existing approach.

Only add a

Third party names are the property of their ovmners.

But we didn’t learn our lesson
History Is repeating itself!
A small sampling of models from the NEW golden age
of parallel programming (2010)

Cilk++ Chapel Go
cnC Charm++ Hadoop
Ct ConcRT mpc
MYO CUDA UPC
RCCE Erlang PPL
OpenCL F# X10
TBB Fortress PLINQ

We’ve lost our way and have slipped back into the “just
create a new language” mentality.

Third party names are the property of their owners.

" @

If language obsession is not the solution, what 1s?

m Consider an early (and successful) adopter of many core
technologies ...The gaming industry:

m Game development ... gross generalizations:

Time and money: 1-3 years for 1-20 million dollars.

= A “blockbuster” game has revenues that rival that from a major
Hollywood movie.

Major games take teams with 50 to 100 people.
Only a quarter of the people are are programmers.

10

" JJE
Many-core Coping in the gaming industry

m The key: Enforce a separation of concerns:

A small number (<10%) of high priced “Technology
programmers” optimize the game engine modules for specific
platforms (C, assembly, etc)

The rest of the team focuses on the art-work, the story line and
putting the basic components together to get the final product
“out the door”. (C++, scripting languages and framewaorks)

m This is a trend reaching across the software industry ...

Programming by importing functionality from existing modules

Scripting languages specialized through custom modules to
Increase productivity across a software team.

Frameworks ... Partial solutions that are specialized to solve
specific problems in a domain.

(intel’

11

Qﬂbﬂ

Modular software, frameworks and parallel computing

m As parallelism goes mainstream and reaches extreme levels of

scalability ... We can’t retrain all the world’s programmers to handle
disruptive scalable hardware.

m Modular software development techniques and Frameworks will save

the day:

Framework: A software platform providing partial solutions to a class of
problems that can be specialized to solve a specific problem.

m This is not a new idea:

Cactus

Common Component Architecture
SIERRA

... and many others

... we just need to push it further and deeper.

We need a systematic way to build a useful collection of
frameworks for Scalable computing

i

12

" J / \j\
Systematic framework design with patterns

m A pattern is a well known solution to a recurring
problem ... captures expert knowledge in a form that can
be peer-reviewed, refined, and passed-on to others.

m An architecture defines the organization and structure
of a software system ... it can be defined by a
hierarchical composition of patterns.

m A framework is a software environment based on an
architecture ... a partial solution for a domain of
problems that can be specialized to solve specific
problems.

Patterns —» Architectures » Frameworks

13

" A
To get frameworks “’“gg Design Puterns
right ... start with an iy
understanding of

software architecture ==zz==-

Erich Gamma
Richard Helm
Ralph |ohnson
John Vlissides

3

SOFTWARE
ARCHITECTURE

PERSPECTIVES ON AN EMERGING DISCIPLINE

MARY SHAW DAVID GARLAN
_‘ 5 su \ Pattams E

PATTERNS
FOR PARALLEL
I’h m, I‘ \u um.

PLPP: Pattern
language of
Parallel
Programming

Joint work with Kurt
Keutzer and his i, HH @ B

Finite State Mach.|
Circuits

group at UC Berkeley | ==

Spectral (FFT)
Dynamic Prog
N-Body
B&B
ical Models
Grid

13 dwarves 14

OPL/PLPP 2010

ﬁAppIications N

as ' Computational Patterns GrapHical-Models
Structural Patterns Model-View-Controller - | SropiabAek
Pipe-and-Filter Iterative-Refinement Graph-Algorithms

Backtrack-Branch-and-

Agent-and-Repository Map-Reduce > Dynamic-Programming Bound
Process-Control Layered-Systems o\ Dense-Linear-Algebra N-Body-Methods
Event-Based/Implicit- Arbitrary-Static-Task-Graph > Sparse-Linear-Algebra Circuits
Invocation </ Unstructured-Grids Spectral-Methods
Puppeteer Structured-Grids Monte-Carlo
Concurrent Algorithm Strategy Patterns Discrete-Event
Task-Parallelism Data-Parallelism Geometric-Decomposition

Divide and Conquer Pipeline Speculation

Implementation Strateqy Patterns

Shared-Queue

SPMD Fork/Join Loop-Par. Distributed-Array
. Shared-map
- - Task-Queue o Shared-Data
E)ata Parfindex ACIENE Queu Partitioned Graph
1 Program structure Data structure
Parallel Execution Patterns
MIMD Thread-Pool Transactions

SIMD Task-Graph

Concurrency Foundation constructs (not expressed as patterns)

Thread craatinn/dactriictinn Maoccana_Daccinn Dnint-Tn_-Dnint_-Quner (mMmiitnal nvnlllcir)n)

" http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

Patterns/framework example

LVCSR Software Architecture

Recognition Network (Pipe-and-filter)
Acoustic Pronunciation Language
Model Model Model
Inference Engine (Graphical Model)
— Voice— Beam Search Iterations Dynamic
Input — -- : Programming
Active State Comdutatlon Steps
(Task Graph)

2

’_’
Speech
Features Se‘év:;:ce
m \ \;) Pl chink

therefore

(Iterative Refinement) I am

Q
o
o
b ——— —_——

U mamas
v

LVCSR = Large vocabulary continuous speech recognition.

Two level
WFST Network

NaAadra Clrini i ~d, Ire
One level
WFST Network

Dvnamic

Preload All]3

Selective Preload]

PASAS

A WEFST Based Inference Engine Framework

Read Files
Initialize data
structures
|
vV
Phase 0

Iteration Control

CPU

Prepare ActiveSet

4

Phase 1

Compute Observation
Probability

v

Phase 2

For each active arc:

* Compute arc transition

probability

Copy results back to
CPU

Collect Backtrack
Info

NA%

Backtrack

¥

| Output Results |

< HTK Format
File Input Format
< SRI Format

C Fixed Beam Width

PC Adaptive Beam Width

[HMM SRI GPU ObsProb

)L HMM WS} GPU ObsProb

00N

flj CHMM SRI GPU ObsProb

(_ Backtrack

C Backtrack + conf. metric

Bé HResult format

RL_ SRI Scoring format

17/24

Patterns/framework exa

The Programmer’s View

j E:u:ulutiu:un F3TDecoder _wc90' (1 project) = T ACE OhboModel I
= E FSTDecoder HETR !:“E’E%_ _I

+- [Common H 1 1 . |
B o e _: E:I:I|LI|III:II'| FaTDecoder 90" (1 project)
H- [GPU_Implementd |— E FET[EEDCIEI‘
= 7 ObsModel_factol
5. £ OhsMadel_C - L Common
#- [obsModel_s +- | CP_Implementation
+- | ObsModel_s| .
4 [ObsModel + | GP_Implementation
= ObsModel ! — o
&3 Obattod L ObsMadel_Factary N
] ObsMod + | QObsMaodel_CHMM_GPU
] ObsMods I:l Ij | =t Funopt & options) = O;
%gzsmojf .- '—'I UbsModel_SHL_CHU h=t Bunopt * options) = 0O:
h SVI0S *Fq = =
] Iobsdelh + | ObsModel_SRI_GPL :st char *£ilensme) o
€ Obshodel_fa +- | ObsMaodel WS _CPU
i‘]g:j:mj::_r; — L_.:"- ':'I:lSMDdE-'l I'."'."SJ GF'U Computation(const int frame,
) FsTDecodsr cu Ej OhsMu:Tl:IEI '-.-I-'SJ GPU.c e
— — CPp CORET 1Rt *label¥ lagHash,
ﬂ ObsModel_WwS1 GPLULh float *LabelProbHash) = 0;
Ej CbsModel WS GP bin_creake.cpp
4] ObsModel_ws1_GPU_kernel.cu o el
h] ObsModel_ws1_GPU_kernel b
h |,
—T 10bsMadel.h Jike Chong, Ekaterina Gonina, Kisun You,
f’ﬂ ObsModel_factory.cpp Kurt Keutzer, “Exploring Recognition
ﬂ CbsModel_Fackory.b Network Representations for Efficient Speech
; ; Inference on Highly Parallel Platforms”,
h . .
m I:T;]TDDbst;Ddel_lmplementatlnn h Submitted to Interspeech 2010.
C o Lecader, CU

Dorothea Kolossa, Jike Chong, Steffen Zeiler,
Kurt Keutzer, “Efficient Manycore CHMM
Speech Recognition for Audiovisual and
Multistream Data”, Submitted to Interspeech
2010.

" Jd
Are Frameworks enough?

(intel,
m Efficiency ... to support the extremely low overheads
required by Amdahl's law ... No time now ..

: : <« talk to me later
collapse layers of abstractions. Dynamic optimization. ;pout SEJITS

m A stable, richly supported, and highly portable
programming environment to make framework
development practical

Implement
Analyze key f framework
app domain

These paths define A hardware abstraction layer
the framework design for heterogeneous platforms
| ... Creates economic
Discover common / justification for the effort

paths through our
pattern language.

since one frameworks
supports many platforms

Y .

OpenCL: A portable hardware abstraction layer

CPUs

, L & .
Multiple cores driving / Emerging
performance increases " Intersection

R LEIS
&

GPUs

Increasingly general purpose
data-parallel computing
Improving numerical precision

‘ OpenCL
Multi-processor Graphics APIs
programming — \ Heterogeneous and Shading
e.g. OpenMP \ Computing Languages

\
e
N
e

OpenCL Working Group openct

eDiverse industry participation ...

—HW vendors (e.g. Apple), system OEMs, middleware
vendors, application developers.

«OpenCL became an important standard “on
release” by virtue of the market coverage of the
companies behind it.

DLABS Acviion fZR) AMDZT ARM soheoe € csiopny

\

ERICSSON Z :"fmes;:a:eﬂ l[. IEM, (inteo Gel ;%\

EEEEEEEEEEEE

@ ('f‘° '”“; NOKIA @ =4 Petapath_ WEW RAPIDMIND

MOTOROLA

{f TEXAS

INSTRUMENTS

EEEEEEEE

OpenCL Platform Model

&)

i Zlﬂm

n
Processing -
Element \ | 5 lFTFT - Hﬂl
Computé’ Unit

Host

Compuie Device

m One Host + one or more Compute Devices
Each Compute Device is composed of one or more
Compute Units

s Each Compute Unit is further divided into one or more
Processing Elements

JOEE

§ /4
The BIG idea behind OpenCL openct

mOpenCL execution model ... define a problem domain and execute a kernel
iInvocation for each point in the domain

E% process a 1024 x 1024 image: Global problem dimensions:
1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total kernel
executions

Traditional loops Data Parallel
void kernel void
trad mulint n, dp_mul(global const float *a,
const float *a, global const float *b,
const float *Db, global float *c¢)
float *c) {
{ int 1d = get_global _1d(0);
int i1;
for (i=0; i<n; i++) c[id] = aJid] * b[id];

cfi] = a[1] * b[i];

} } // execute over ‘“n” work-items

&
An N-dimension domain of work-items OpencL
mDefine an N-dimensioned index space that is “best” for
your algorithm
1 Global Dimensions: 1024 x 1024 (whole problem space)

1 Local Dimensions: 128 x 128 (work group ... executes
together)

1024 Synchronization between work-items

possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

1024

25

Vector Addition: Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(O,
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, O,
NULL, &cb);
devices = malloc(cb);

clGetContextinfo(context, CL_CONTEXT_DEVICES, cb,
devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context,
‘devices[0], 0, NULL);

// allocate the buffer memory objects
memobjsEBF = clCreateBuffer(context,
CL_MEM_READ _ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_fToat)*n, srcA,
NULL);}
memobjs[b% = clCreateBuffer(context,CL MEM_READ_ONLY
| CL_MEM_COPY_HOST_PTR, sizeof(cl_flToat)*n, srcB,
NULL);
memobjs[2] =
cICreateBuffer(context,CL_MEM_WRITE_ONLY,
sizeof(cl_float)*n,

NULL) ;

NULL,

// create the program

pro%ram = clCreatePro%ramWithSource(context, 1,
program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0O, NULL, NULL, NULL,

NULL):

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, (void *) &memobjs[O0],
sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
(void *)&memobjs[2],
sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2,

// set work-item dimensions
global _work _size[0] = n;

// execute kernel

err = cIEnqueueNDRangeKernel cmd_%ueue, kernel, 1,
NULL, global work size, NULL, O, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs 21,
CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Vector Addition: Host Program opencL

Build the program

Define platform and queues

/
« Create and setup kernel v

// set the args values
err = ciSetkerneiArg{kernei, 0, {(void *) &memobisili,
o mzmnf;\r i mem 1)

err = ciSetkKernefArg(kernel, 1, (void “\mmemnbgsfli,
sizeof(cl _mem));

ery {= ciSetkernelArg(kernel, 2, (void *j&memobisiZi,
sizegf(cl memii;

// set work-item dimensions
global v-—" =% — ==
Execute the kernel
// execlL
err = clEnqueueNDRangeKernel cmd_%ueue, kernel, 1,

Define Memory object NULL, global_work_size NULL, NULL);

// re:
err = Read results on the host rue.

oy e

e m ey g e R p—— Y 4}

Create the program

It’'s complicated, but most of this is “boilerplate” and not as bad as it looks.

OpenCL summary

F- F.

5
Context
Programs Kernels Memory Objects Command Queues
Il 4 I. .l 1
S dp_mul Images Buffers
__kernel void
dp_mul(global const float *a, dp_mul In QOut of
lobal const float *b, yram bi 0] val
glgbZI :‘:Iggts*c)oa CPU program binary arg[0] value Order Order
{ |
int id = get_global_id(0): s argl] value Queue Queue
}C[id] = afid] * bid]; GPU program binary
argZ] value I Compute Device

Compile code

What should we do?

« Parallel Programming is hard ... so programmers want to do it
once ... write once and compile to run everywhere.

* We should foster the emergence of a small number of
Industry standard solutions:
— OpenMP for shared memory
— MPI for message passing
— OpenCL for Heterogeneous computing

e We've lost sight of how incredibly hard it is to create a cross-
platform industry standard.

If we respect our programmers, we will keep this in
mind and work to make the right standards work,
and only introduce new languages as a last resort.

" @

Conclusions

m Many core processors mean all software must be parallel.

m We can'’t turn everyone into parallel algorithm experts ... we
have to support a separation of concerns:

Hardcore experts build programming frameworks ... emphasize
efficiency using industry standard languages.

Domain expert programmers assembly applications within a
framework ... emphasize productivity.

m But we (industry) need help

Industry is naturally predisposed to trap customers with proprietary
languages.

This hurts us all in the long run ... so please, only YOU (our
“customers”) can save us ... refuse ANY proprietary programming
environment ... demand industry standards and force industry to “do
the right thing”.

29

" A /NN
Acknowledgements A

m Kurt Keutzer (UCB), Ralph Johnson (UIUC) and our
community of patterns writers:

Hugo Andrade, Chris Batten, Eric Battenberg, Hovig Bayandorian,
Dar Bui, Bryan Catanzaro, Jike Chong, Enylton Coelho, Katya

Gonina, Yunsup Lee, Mark Murphy, Herdi Pan, Kaushik Ravindran,
Sayak Ray, Erich Strohmaier, Bor-yiing Su, Narayanan Sunaaram,

Guogiang Wang, Youngmin VYi., Jeff Anderson-Lee, Joel Jones,
Terry Ligocki, and Sam Williams.

m The development of our pattern language has also
received a boost from Par Lab faculty — particularly:
Krste Asanovic, Jim Demmel, and David Patterson.

30

"
Backup slides

m Full size version of the “2005 era” slides | referenced

31

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM

AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze

BSP
BlockComm
&=
"C*inC
C**

CarlOS
Cashmere
Cc4

CC++

Chu
Charlotte
Charm
Charm++
Cid

Cilk
CM-Fortran
Converse
Code
COOoL

CORRELATE
CPS

CRL

CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD

DICE.

DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .

ECO

Eiffel

Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM

FLASH

The FORCE
Fork
Fortran-M
FX

GA
GAMMA
Glenda

A common response:
Find A Good parallel programming model

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE

Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM

Lilac

Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90

P++

P3L

Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti

pC

PCN

PCP:

PH
PEACE
PCU

PET
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM

PSI

PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
SDDA.
SHMEM
SIMPLE
Sina

SISAL.
distributed
smalltalk
SMI.

SONIC
Split-C.

SR

Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY

ucC

\Y

ViCc*
Visifold V-NUS
VPE

Win32 threads
WinPar
XENOOPS
XPC

Zounds

ZPL

Models from the golden age of parallel programming (—95)

Third party names are the property of their owners.

Choice overload:
Too many options can hurt you

m The Draeger Grocery Store 60
experiment consumer choice:

Two Jam-displays with coupon’s
for purchase discount.

m 24 different Jam’s
m 6 different Jam’s

How many stopped by to try
samples at the display?

Of those who “tried”, how many €

40

30

Percentage

bought jam?

try

> >
= =
o] o]

try

4 6

Programmers don’t need a glut of options ... just give us something that works OK
on every platform we care about. Give us a decent standard and we’ll do the rest

The findings from this study show that an extensive array of options can at first seem highly appealing to
consumers, yet can reduce their subsequent motivation to purchase the product.

lyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.

