Asynchronous computing of
irregular applications using the
SVPN model and S-Net coordination

Some context

Exascale computing presents new challenges
The user community: conservative and inertial
Need a way forward

— change the “logistics” of computing
— preserve the “mathematics”

This will not be possible within subject niches!
Separation of concerns

Solution: component technology

e Mathematical components

 Coordination language for concurrency
engineers

 Two-level specification
 I[mportant: the issue of scale!

Medium grain mathematics

lightweight components, no internal
persistent state, no access to the
environment’s state

any programming language (... for
conservative users ...)

can re-compute a component without
breaking semantics

can clone and move

“instructions of an asynchronous dataflow
machine”

Large scale logistics

e Coordination language taking care of:

— messages delivering arguments to functional
components

— messages produced by the functional components

— aggregating and disaggregating messages
(parameter lists) and providing a hierarchical
abstraction OOP style

— (synchronisation) storage

Remove coordination spaghetti from
application code

e Components only needing ONE library
function: for message OUTPUT

— Due to the lack of access to the environment’s
state, all input is available at the start

 Open question: to what extent the separation
is possible?

 Dataflow agenda

— has the same problem: data driven computation
vs hierarchical data, inheritance, incapsulation,
etc.

4

Technology: S-Net at a glance

B SISO boxes

B connected by
— Single Input stream
— Single Output stream
B Streams transport records:
sets of named entities
— Opaq entities (value
unavaliable to S-Net): fields

— Transparent entities (vlues:
Integer): tags

Box behaviour abstracted
behind a type signature

Boxes coded in a box
language, not S-Net

A box maps a single input
record onto a stream

(zero, one or more) of
output records.

{X, A,<W>}

{A,B,<T>} box foo

{X, A,<W>}

A 4

{A,B,<T>} > {X, A, <W>}

»
»

Network combinators: Serial

A and B operate concurrently
* |[nput-record — A; out(A) > B

X=A.B

Network Combinators: Choice

e |Input records are matched with the input types of A and B
* If matches A, goes to A, else if matches B goes to B
e |f matches both, goes to the best match

e |f both matches are the same strength (e.g. {X,Y,Z} vs{X,Y} and {Y,Z}), then the
choice is nondeteministic

X=A||B

4

Single stream concurrency

T~ T1
R R
2l T2
e Left: MIMO
— Each channel blockable independently, state transitions inside
e Right: SISO

Merger nondeterministic, R gets an arbitrarily interleaved stream
No state transitions, must accept either kind of record

Even so, either substream can block the other one

Resources may currently be available for one substream
(implementation) Merger is a demand-driven reordering buffer

Network Combinator: Serial Replication

* An unfolding chain of serially-connected replicas of A
* Unfolding ends when all outputs from A match <stop>

X= A**{<stop>}

AR AT -

— ¢ Y Y y y out L
> does not contain <stop> Nmerger
l 3 —

contains <stop>

Index Split

e Allinput records are required to have tag <T>

* The tag value determines which replica of A the record is to be sent to
e <T> has arbitrary integer values

* A may or may not require the knowledge of <T>

X=AlT>

<T>

\ 4

Determinism

e All combinators (except ..) are supported in two versions
* Nondeterministic

— |, *
— The merger joins the streams out of order
* Deterministic
_ | | 1] **
— The mergerJoins the streams in order
* The .. combinator does not contain a merger, hence one version

e We are discussing the introduction of . such that A.B allows reordering of records
between A and B.

4

Special Boxes

filter sync
{A,B,<T>}-> [{A,BHC,D}]
7 [A,<T><X>:=1}] {A,B}—>{A,B} | {A,B,C,D}
{B,<T>,<X>:=2}] {C,D}—{C,D}
o _ — Store record that comes first
— Eliminate record fields — Wait for the other kind of
: : record, while waiting pass
— Duplicate record fields records of the first kind
— Rename records fields through
— Then join the two records
— Add tags and die.

— Manipulate tag values - tAh Foiaédhéynchfoce" is a pass-

Type Concept

 Messages are sets of fields/tags
e Subtyping as supersetting: {A,B} is good for
{A}->{C}, since {A} c— {A,B}
 Type signatures are set of rules:
{X,Y}->{Y,Z}
{V}->{A,B,C}
here a superset is a subtype (can always add rules)

4

Inheritance

* Box code typically designed in isolation

* Interfaces only partially overlap

— Boxes may need extra parameters,etc...

* Network composition without redesign?

foo

{A,B}—{C,D}

bar

9

{C,X}—>{X,Y}

Flow inheritance

foo v bar

{A,B}—{C,D} {CX}—>{X,Y}

 Observe that {A,B,X} is a subtype of {A,B}, hence
aceptable as input of foo.

e Instead of ignoring X, save it and attach it to all
outputs of foo (thus lowering their type - which is
valid).This is called "flow inheritance”

e Similar with bar.
 The resulting signature is {A,B,X}—>{X,D,Y}

M

Inheritance for synchrocells

sync

[HA.BHC,D}]

{A,B}—>{A,B} | {A,B,C,D}
{C,D}—{C,D}

B Operational behaviour is symmetric
B Type signature is not

B Ignores the case when the synchrocell is intended not to
synchronise

B Single inheritance (via the first pattern)
B The other patterns not inheriting, pure subtyping

Code example: parallel DES

net des ({Key, Pt} -= {Ct}) { net XorHdalfBlocks
box xor((Opl, Op2) -> (Result)); connect
box InitialP((Pt) -> (L, R)): [{L, Rf} -> {Opl=L, Op2=Rf}]
box genSubKeysa((Key) -> (EKeySet)); s Xor .. [{Result} -> {R=Result}];
box EKeyInvert((KeySet) -> (KeySet)); }
box FinalP((L, R} == [(Ct)); connect
net desRound { [{L,R,KeySet,<C>}
net feistel { ->{L,R,KeySet,<C=C+1>};{Rn=R}] ..
net ExpandAndEevSelect { (
box BitExpand((R) -> (Rx)); [{Rn} -> {L=Rn}]
box SubKey((KeySet, <C>)->(KeySet,NextKey,<C>)); |
} (
connect [{L,R,KeySet,<C>} -> {L}; {R, KeySet, <C>}]
[{R,EKeySet,<C>}->{R};{EKeySet,<C>}] .. N |
([{L}->{L}]
BitExpand |
| feistel
SubKey | B
) oe [|{L},{KeySet,REf,<C>}|]1*{L,KeySet,REf, <C>} ..
[| {KeySet,NextKey,<C>},{Rx}|] XorHalfBlocks
* {Rx,KeySet ,NextEey,<C>};]
net KeyMix)} «. [|{L}, {R,KeySet,<C>}|]*{L,R,KeySet,<C>};
connect }
[{NextKey, Rx} -> {Opl=NextKey, Op2=Rx}] .. connect
¥0r .. [{Result} -> {BitStr=Result}]: genSubKeys ..
([1 | ([{<Decipher>}->{}]..KeyInvert)) ..
box Substitute((BitStr) -»> (55tr)); InitialP ..
box Pbox((S5Str) -> (Rf)); [{L,R,KeySet} ->{L,R,KeySet,<C=0>}] ..
} desRound* {<C>} if <C==16> ..
connect FinalP .. [{FKeySet, <C>} -> {}1;

ExpandAndFeySelect .. KeyMix ..
Substitute .. Pbox;

M

Threading by inheritance

| receive .. |

| segAmodY ...send ...

I send ... i

| seg B..send... i
|
[send ... |

B

i segC...send ... i
| |
| send ... |

receive ... :
segD...send ... :
send ... |
o recelve...
I segE...send ...
| send ...

REPLACE
control flow by
data flow

encapsulate
local vars in
functional
segments

Heterogeneity

Can spawn a new
inheritance
thread

encapsulate local
vars in functional
segments

M

Add SPMD =>
Spinal Vector Petri Net (SVPN)

all messages carry a “virtual processor tag”

M

Direct translation to S-Net

(Solverl<p>)*<out>
Solver = A|B|C|D|E|P|Q]|R

A = [|{{messagedA}|]..FuncA

4

Particles in Cells (PIC)

* Simulation of plasma particles interacting with
each other via electromagnetic field

e Consider 1d for simplicity, and 1 sort of particles

1 23 4 5 CRENA

J T A R %MHJ d

e Field split evenly, perfectly balanced, particles
imbalanced.

e “Windows” are introduced representing work to
be delegated to other processors.

Basic concepts

Particles are charged, each carrying a unit of charge.

The field-grid nodes are assigned the charge of the
particles near them, by interpolation.

T
C

he field solver computes the field values due to the
narges assigned to the nodes

T

d
n

he particle pusher, applies EM forces to the particles
ue to the field values interpolated from the
eighbouring nodes. The particles move accordingly.

1 23 4 5 Greeenr 7

%m

G—Tm 0 A Lo lo % m\ M o

Basic data structures

The home record of a cell: particles pushed by the home base
{<p>,<A>, Phi, LD,<nw>, x,v}

The window record: particles pushed by a deputy
{<p>,<A>,LD, x, v, <return>,<id>}

Processor tag <p>, stage <A>

D
1 2 3 4 5 6 7
9 : E
S 4
Wl . eesEEa : IIIIIIIIIIIIIIIIIIIIII

4

4

The net

<p>, <A>, Phi, LD,<nw>,x,v

<p>, <A>,LD, x, v, <return>

net solution {
net solve
connect stageA| | stageB|| stageC|]| ..;

}

connect (solvel<p>.. balance) * <out>

solve

@@
solve

@E
solve

@@
solve

balance

Stages A,B,C

net solution {
net solve
connect stageA| stageB| stageC| ..;

}

connect (solvell<p>.. balance) * <out>

comments
stageA: {<p>,<A>, Phi, LD,<nw>, x}—>{<p>,,LD,rho},{<p>, <C>,rho},
{<p>,<C>,Phi,LD,<nw>,x}, as is
{<p>,<C>,Right}, p=p—-1
{<p><C>,Left} p=p+1

{<p>,<A>,LD,x,v,<return>} — {{<p>LD1,rhol} p= return
{<p>,<F>,<return>,LD, x,v} as is
{<p>,<D>,<loc>,LD1}} LD1=LD,loc=p,p=return

stageB=[| {<p>,,LD,rho} {,LD1,rho1} |]..cagr
cagr: {,LD,LD1,rho,rho1} — {<C>,rho}
stageC=[| {<C>,Phi} {<p>,<C>,rho} {<C>,Right{<C>,Left} |] ..fsolve..[{<D>} —{<D>};{<F>}]
fsolve: {<C>,rho,Phi,LD,Right,Left} —{<D>,Phi,LD}
| — B N

Stage A in detail: Al

stageA: {<p>,<A>,Phi,LD,<nw>x}—>{<p>,LD,rho}, {<p><C>rho}, comments
{<p>,<C>,Phi,LD,<nw>,x}, as is
{<p>,<C>,Right}, p= p—1
{<p>,<C>,Left} p=p+1

{<p><A> LD, x, v, <return>} — {<p>,,LD1,rhol}, p=return

{<p>,<F>,<return>,LD, x, v}, as is
{<p><D><loc>,LD1} LD1=LD, loc=p,p=return

stageA= stageAl |stageA2

stageAl = [{<A>,<nw>} if <nw==1>->{,LD}; {<C>,<nw>}
>{<C>}; {<C>,<nw>}]

(
interpolate |
[{<nw>} ->{<nw> <i>}{<nw> <ii>}]..
(getEndPoints | [{<ii>}->])
)
interpolate : {x, LD} = {rho, LD}
getEndPoints: {<p>,Phi, LD} — {<p>,Right}, {<p>,Left}

ya

Stage A in detail: A2

stageA: {<p>,<A>,Phi, LD,<nw>x}—> {{<p>,LD,<nw>,rho} comments
{<p>,<C>,Phi,LD,<nw>,x} as is
{<p>,<C>,Right} p=p-1
{<p><C>,Left}} p=p+1
{<p><A> LD, x, v<return>} — {<p>,,LD1,rhol} p=return
{<p>,<F>,<return>,LD,x,v}, as is
{<p><D><loc>,LD1} LD1=LD,loc=p,p=return

stageA2 = [{<A>,<return>} — {,<return>};{<F>,<return>};{<D>}]..
(
[{,<return>} — {,<p>=<return>}]..interpolate |
[{<D>,<return>,<p>} - {<D><loc>=<p>,<p>=<return>}] |
[]

)
interpolate : {x, LD} — {rho, LD}

4

Conclusions

SNet suggests a top down design style

Records contain the state of computation, float
between boxes

Topology induced by tagging and type match
Define signatures and insert synchronisers first
Then refine signatures down to networks

Finally the lowest level boxes should be stateless
and generic

University of

Hertfordshire

' H UNIVERSITEIT
VAN AMSTERDAM

VIr

Imperial College
UNIVERSITY OF TWENTE. L.ondon

M

