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from seedMotivationMotivation

COMMODITY COMPUTERS = HETEROGENEOUS SYSTEMSCOMMODITY COMPUTERS = HETEROGENEOUS SYSTEMS

– Tightly coupled 
– Multi-core General-Purpose Processors (CPUS)
– Many-core Graphic Processing Units (GPUS)
– Special accelerators, co-processors…

+ SIGNIFICANT COMPUTING POWER+ SIGNIFICANT COMPUTING POWER

– Not yet explored for COLLABORATIVE COMPUTING

– Does it worth to use the available resources to improve real p
Performance per Watt?

- BUT HETEROGENEITY MAKES PROBLEMS MUCH MORE COMPLEX!
– Performance modeling and load balancing
– Different programming models, languages and implementations
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1 DEVELOPED COLLABORATIVE PROGRAMMING ENVIRONMENT1. DEVELOPED COLLABORATIVE PROGRAMMING ENVIRONMENT
FOR HETEROGENEOUS COMPUTERS (CPHC)

2. PERFORMANCE MODELING AND LOAD BALANCING

For heterogeneous systems in particular for CPU+GPU– For heterogeneous systems, in particular  for CPU+GPU

3. CASE STUDY: Decision-Support System benchmark TPC-Hpp y

4 C F W4. CONCLUSIONS AND FUTURE WORK
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MASTER-SLAVE paradigmMASTER SLAVE paradigm

• CPU (Master)

Gl b l i ll– Global execution controller

– Access the whole global memory

• INTERCONNECTION BUSSES

– Limited and asymmetric communication bandwidth
– Potential execution bottleneck– Potential execution bottleneck

• UNDERLYING DEVICES (Slaves)

– Different architectures and programming models

– Computation performed using local memories
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TASK – basic programming unit (coarser-grained)TASK – basic programming unit (coarser-grained)
– CONFIGURATION PARAMETERS

– Task: application, task dependency information
Environment: device type number of devices– Environment: device type, number of devices…

– PRIMITIVE JOB WRAPPER

– DIVISIBLE TASK – comprises several finer-grained Primitive 
JobsJobs

– AGGLOMERATIVE TASK – allows grouping of Primitive Jobs

PRIMITIVE JOB – minimal program portion for parallel 

Primitive Job 
Granularity

Task Type
Divisible Agglomerative

Coarser-

p g p p
execution

– CONFIGURATION PARAMETERS

– I/O and performance specifics Coarser
grained NO --

Balanced YES NO

Finer/Balanced YES YES

I/O and performance specifics, …

– CARRIES PER-DEVICE-TYPE IMPLEMENTATIONS

– Vendor-specific programming models and tools 
– Specific optimization techniques
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for Heterogeneous Systems*

Task Level ParallelismTask Level Parallelism
– TASK SCHEDULER forward independent tasks to 

JOB DISPATCHER according to task and environment 
configuration and current platform (DEVICE QUERY) g p ( )

Data Level Parallelism
PRIMITIVE JOBS arranged into JOB QUEUES (currently– PRIMITIVE JOBS arranged into JOB QUEUES (currently, 
1D-3D grid organization) for DIVISIBLE
(AGGLOMERATIVE) TASKS

– JOB DISPATCHER uses DEVICE QUERY and JOB QUEUE
information to map (agglomerated) PRIMITIVE JOBS toinformation to map (agglomerated) PRIMITIVE JOBS to 
the requested devices; then initiates and controls 
further execution

Nested Parallelism
Task Type

Divisible Agglomerative Nested Parallelism
– If provided, JOB DISPATCHER can be configured to 

perceive a certain number of cores of a multi-core  
as a single device 

gg
NO --

YES NO

YES YES
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Workshop on Advances in Parallel and Distributed Computational Models (APDCM/IPDPS 2010), April 2010. 
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for Heterogeneous Systems

PROBLEM

How to make good DYNAMIC LOAD BALANCING
decisions, using partial PERFORMANCE MODELS of 
the devices, while being aware of :
- application demands
- implementation specifics
- platform / device heterogeneity
- complex memory hierarchies

Task Type
Divisible Agglomerative

- limited asymmetric communication bandwidth
- …

gg
NO --

YES NO

YES YES
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ONLINE PERFORMANCE MODELING

CPHC should provide for CPU + GPU

ONLINE PERFORMANCE MODELING
– PERFORMANCE ESTIMATION of all heterogeneous devices DURING THE EXECUTION

– No prior knowledge on the performance of an application is available on any of the devices
– Modeling of the overall CPU and GPU performance for different problem sizes

DYNAMIC LOAD BALANCING
– OPTIMAL DISTRIBUTION OF COMPUTATIONS (PRIMITIVE JOBS)

– Partial estimations of the performance should be built and used to decide on optimal mapping
R t d l ti h ld id l d b l i ithi i– Returned solution should provide load balancing within a given accuracy

COMMUNICATION AWARENESS
– MODELING OF THE BANDWIDTH for interconnection busses DURING THE EXECUTIONMODELING OF THE BANDWIDTH for interconnection busses DURING THE EXECUTION

– To select problem sizes that maximize the interconnection bandwidth 
– The algorithm should be aware of asymmetric bandwidth for Host-To-Device and Device-To-Host transfers 

CPU+GPU ARCHITECTURAL SPECIFICSCPU+GPU ARCHITECTURAL SPECIFICS
– Make use of ENVIRONMENT-SPECIFIC FUNCTIONS to ease performance modeling

– Asynchronous transfers and CUDA streams to overlap communication with computation
– Be aware of diverse capabilities of different devices, but also for devices of the same vendor (e.g. GT200 vs. 

Fermi)
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Distribution on Heterogeneous Systems

CONSTANT PERFORMANCE MODELS (CPM)CONSTANT PERFORMANCE MODELS (CPM)
– DEVICE PERFORMANCE (SPEED) : constant positive number

– Typically represents relative speed when executing a serial benchmark of a given size
– COMPUTATION DISTRIBUTION : proportional to the speed of the deviceCOMPUTATION DISTRIBUTION : proportional to the speed of the device

FUNCTIONAL PERFORMANCE MODELS (FPM)
– DEVICE PERFORMANCE (SPEED) : continuous function of the problem size

– Typically requires several benchmark runs and a significant amount of time to build it
– COMPUTATION DISTRIBUTION : relies on the functional speed of the processor

FPM VS. CPM
– MORE REALISTIC : integrates important features of heterogeneous processor

– Processor heterogeneity, the heterogeneity of memory structure, and other effects
– MORE ACCURATE DISTRIBUTION of computation across heterogeneous devices
– APPLICATION-CENTRIC approach : different applications characterize speed by different functions
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DSS benchmark TPC-H

DATABASE APPLICATIONS : TPC-H BENCHMARKDATABASE APPLICATIONS : TPC H BENCHMARK
– TRANSACTION PROCESSING PERFORMANCE COUNCIL (TPC)

– Provides several representative queries of real database applications 
– TPC-H is a Decision Support System Benchmark used in industrypp y y

– QUERIES: specified in SQL and executed on top of DBMS
– Database applications implement basic, well established operations, such as SCAN and JOIN

SELECTED QUERIES WITH DIFFERENT COMPLEXITIES
Q6: implements a SEQUENTIAL SCAN

SELECT

Q3: implements 2-NESTED HASHED JOINS

SELECT SELECT 
sum(extendedprice*discount) AS revenue

FROM 
lineitem

WHERE 
AND

SELECT 
orderkey

FROM 
costumer, orders, lineitem

WHERE 
AND shipdate >= date ‘[DATE1]’ AND

shipdate < date ‘[DATE2]’ AND
discount BETWEEN [DISCOUNT]-0.01 AND 

[DISCOUNT]+0.01 AND
quantity < [QUANTITY];

c_mktsegment = ‘[SEGMENT]’ AND
c_costumerkey = o_costumerkey AND
l_orderkey = o_orderkey AND
o_orderdate < date ‘[DATE]’ AND
l shipdate > date ‘[DATE]’; 
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Q6 Query Parallelization
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Q3 Query Parallelization
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Building Full Performance Models

FULL PERFORMANCE MODELS:  
PER-DEVICE REAL
PERFORMANCE
– Experimentally obtained using CPU + GPU 

platform specifics
E h ti h th f ll f– Exhaustive search on the full range of 
problem sizes

– High cost of building in general!!!

Q3 Query
DBGEN Scale Factor 1

Experimental Setup
CPU GPU

Intel Core 2 Quad nVIDIA GeForce
285GTX

Speed/Core (GHz) 2.83 1.476

Input Data Size 57.8 MB (of 950 MB)
#lineitem records 6001215
#order records 1500000
#customer records 1500000
#records per chunk 32439

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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Global Memory (MB) 4096 1024
#records per chunk 32439
#chunks 185
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CPU + GPU Performance Modeling (1)

Performance Metric Initialization Approximation Iteration

PROBLEM DEFINITION: PRIMITIVE
JOB
– nin – input data requirements
– nout - output data requirements
– n – number of assigned chunks

METRIC : ABSOLUTE SPEED*
– p devices: P1, P2,…, PP
– N total #Primitive Jobs (chunks)
– Device Load [chunks]: n1, n2,…, nP

– Absolute speed:
si(ni) = ni/ti(ni), 1≤i≤p

SOLUTION: OPTIMAL LOAD
BALANCING*
Lies on the straight line that passes through theLies on the straight line that passes through the 
origin of coordinate system, such that:

x1/s1(x1)= x2/s2(x2)=…= xp/sp(xp)
x1 + x2 + … + xp = N 
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*Lastovetsky, A., and R. Reddy, "Distributed Data Partitioning for Heterogeneous Processors Based on Partial Estimation of their 
Functional Performance Models", HeteroPar 2009, Netherlands, Lecture Notes in Computer Science, vol. 6043, Springer, pp. 91-
101, 25/9/2009, 2010.
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CPU + GPU Performance Modeling (2)

Performance Metric Initialization Approximation Iteration

① All the P computational units execute N/p
chunks in parallel

ni = N/p, 1≤i≤p

② IF (device is GPU) AND (task is Divisible 
and Agglomerative)
THEN  go to 3
ELSE go to 4ELSE go to 4

③ Split the given computational load into 
streams and use asynchronous transfers to 
overlap communication with computation

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (3)

Performance Metric Initialization Approximation Iteration

1 All the P computational units execute N/p
chunks in parallel

ni = N/p, 1≤i≤p

Streaming

– SUBDIVIDE ni computational chunks using DIV2 STRATEGY
– No prior knowledge of the performance of an application!

E h t h h lf th l d f th i t
2 IF (device is GPU) AND (task is Divisible 

and Agglomerative)
THEN  go to 3
ELSE go to 4

– Each stream has half the load of the previous stream
– The algorithm may continue to split the workload until assigning a 

stream with load equal to 1

– BANDWIDTH-AWARE DIV2 STRATEGY S go o

③ Split the given computational load into 
streams and use asynchronous transfers to 
overlap communication with computation

BANDWIDTH AWARE DIV2 STRATEGY
– Interconnection bandwidth depends on the amount of data that 

should be transferred and not on the computational demands
– Run small pre-calibration tests for HOST-TO-DEVICE AND DEVICE-

TO-HOST transfers
Tests can be stopped when saturation points are detected or– Tests can be stopped when saturation points are detected, or 
when transfers reach the desired value (e.g. 60% of the theoretical 
maximum)

– CASE STUDY: nmin_size = 1
– Primary agglomeration into the chunks is performed in order toPrimary agglomeration into the chunks is performed in order to 

be bandwidth aware

Stream 0
Stream 1

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (4)

Performance Metric Initialization Approximation Iteration

1 All the P computational units execute N/p
chunks in parallel

ni = N/p, 1≤i≤p

2 IF (device is GPU) AND (task is Divisible 
and Agglomerative)
THEN  go to 3
ELSE go to 4S go o

3 Split the given computational load into 
streams and use asynchronous transfers to 
overlap communication with computation

④ Execute & record execution times: ti(N/p)

⑤ IF max1≤i,j≤p{((ti(N/p)-tj(N/p))/ti(N/p)}≤ε
THEN even distribution solves the problem 
and the algorithm stops;
ELSE performance of devices is calculated, 
such that:
si(N/p) = (N/p)/ti(N/p), 1≤i≤p

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (5)

Performance Metric Initialization Approximation Iteration

① Traditional approach*: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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*Lastovetsky, A., and R. Reddy, "Distributed Data Partitioning for Heterogeneous Processors Based on Partial Estimation of their 
Functional Performance Models", HeteroPar 2009, Netherlands, Lecture Notes in Computer Science, vol. 6043, Springer, pp. 91-
101, 25/9/2009, 2010.
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CPU + GPU Performance Modeling (6)

Performance Metric Initialization Approximation Iteration

1 Traditional approach: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (7)

Performance Metric Initialization Approximation Iteration

1 Traditional approach: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (8)

Performance Metric Initialization Approximation Iteration

1 Traditional approach: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling (9)

Performance Metric Initialization Approximation Iteration

1 Traditional approach: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results
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CPU + GPU Performance Modeling(10)

Performance Metric Initialization Approximation Iteration

1 Traditional approach: Performance of each 
device is modeled as a constant

si(x) = si(N/p), 1≤i≤p

2 GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results
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CPU + GPU Performance Modeling(11)

Performance Metric Initialization Approximation Iteration

① Draw Upper U and Lower L lines through 
the following points:
(0,0), (N/p, maxi{si(N/p)})

(0,0), (N/p, mini{si(N/p)})

② Let xi(U) and xi(L) be the intersections with  
si(x)
IF exists xi(L)-xi(U)≥1
THEN  go to 3
ELSE go to 5

③ Bisect the angle between U and L by the③ Bisect the angle between U and L by the 
line M, and calculate intersections xi(M)

④ IF Σi xi(M) ≤ N
THEN  U=M
ELSE L=M
REPEAT 2

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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**Lastovetsky, A., and R. Reddy, "Data Partitioning with a Functional Performance Model of Heterogeneous Processors", 
International Journal of High Performance Computing Applications, vol. 21, issue 1: Sage, pp. 76-90, 2007
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CPU + GPU Performance Modeling(12)

Performance Metric Initialization Approximation Iteration

1 Draw Upper U and Lower L lines through 
the following points:
(0,0), (N/p, maxi{si(N/p)})

(0,0), (N/p, mini{si(N/p)})

2 Let xi(U) and xi(L) be the intersections with  
si(x)
IF exists xi(L)-xi(U)≥1
THEN  go to 3
ELSE go to 5

3 Bisect the angle between U and L by the3 Bisect the angle between U and L by the 
line M, and calculate intersections xi(M)

4 IF Σi xi(M) ≤ N
THEN  U=M
ELSE L=M
REPEAT 2

⑤ Employ streaming strategy on the 

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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calculated workload value
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CPU + GPU Performance Modeling(13)

Performance Metric Initialization Approximation Iteration

1 Draw Upper U and Lower L lines through 
the following points:
(0,0), (N/p, maxi{si(N/p)})

Streaming

– STREAMING STRATEGY

(0,0), (N/p, mini{si(N/p)})

2 Let xi(U) and xi(L) be the intersections with  
si(x)

– Results obtained using DIV2 STRATEGY give the possibility to 
characterize the application demands (e.g. communication-to-
computation ratio)

– Workload size for the next stream should be chosen in order to 
OVERLAP TRANSFERS WITH COMPUTATION in the previous stream

IF exists xi(L)-xi(U)≥1
THEN  go to 3
ELSE go to 5

3 Bisect the angle between U and L by the

OVERLAP TRANSFERS WITH COMPUTATION in the previous stream

– BANDWIDTH-AWARE STREAMING STRATEGY
– Reuses the MINIMAL WORKLOAD SIZE FROM DIV2 STRATEGY

(obtained via HOST-TO-DEVICE and DEVICE-TO-HOST tests) 3 Bisect the angle between U and L by the 
line M, and calculate intersections xi(M)

4 IF Σi xi(M) ≤ N
THEN  U=M

IF (ncurr ≥ nmin_size)
THEN  use strategy (cont. overlapping)
ELSE restart strategy on ncurr load

If the load drops below nmin size strategy is restarted on the
ELSE L=M
REPEAT 2

⑤ Employ streaming strategy on the 

– If the load drops below nmin_size, strategy is restarted on the 
remaining load

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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calculated workload value
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CPU + GPU Performance Modeling(14)

Performance Metric Initialization Approximation Iteration

1 Draw Upper U and Lower L lines through 
the following points:
(0,0), (N/p, maxi{si(N/p)})

Streaming

– CASE STUDY: Q3 QUERY
– About 96% of total execution time goes on data transfers

HOSTTODEVICE Transfers 53%
(0,0), (N/p, mini{si(N/p)})

2 Let xi(U) and xi(L) be the intersections with  
si(x)

– HOSTTODEVICE Transfers – 53%
– KERNEL Execution – 4% 
– DEVICETOHOST Transfers – 43%

– BANDWIDTH-AWARE STREAMING STRATEGY
IF exists xi(L)-xi(U)≥1
THEN  go to 3
ELSE go to 5

3 Bisect the angle between U and L by the

– nmin_size = 1, overlap HOSTTODEVICE transfers and KERNEL
execution between two streams

3 Bisect the angle between U and L by the 
line M, and calculate intersections xi(M)

4 IF Σi xi(M) ≤ N
THEN  U=M
ELSE L=M
REPEAT 2

⑤ Employ streaming strategy on the 

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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calculated workload value
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CPU + GPU Performance Modeling(15)

Performance Metric Initialization Approximation Iteration

1 Draw Upper U and Lower L lines through 
the following points:
(0,0), (N/p, maxi{si(N/p)})

(0,0), (N/p, mini{si(N/p)})

2 Let xi(U) and xi(L) be the intersections with  
si(x)
IF exists xi(L)-xi(U)≥1
THEN  go to 3
ELSE go to 5

3 Bisect the angle between U and L by the3 Bisect the angle between U and L by the 
line M, and calculate intersections xi(M)

4 IF Σi xi(M) ≤ N
THEN  U=M
ELSE L=M
REPEAT 2

5 Employ streaming strategy on the 
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calculated workload value
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CPU + GPU Performance Modeling(16)

Performance Metric Initialization Approximation Iteration

① Refine performance models with the newly 
obtained results

2 GPU ifi d li U i th bt i d2 GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

3 Incorporate streaming results

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling(17)

Performance Metric Initialization Approximation Iteration

1 Refine performance models with the newly 
obtained results

② GPU ifi d li U i th bt i d② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results

– for each stream

Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento em Lisboa
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CPU + GPU Performance Modeling(18)

Performance Metric Initialization Approximation Iteration

1 Refine performance models with the newly 
obtained results

② GPU ifi d li U i th bt i d② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results

– for each stream
f h t t t– for each stream restart
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CPU + GPU Performance Modeling(19)

Performance Metric Initialization Approximation Iteration

1 Refine performance models with the newly 
obtained results

② GPU ifi d li U i th bt i d② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results

– for each stream
f h t t t– for each stream restart

– for every stream combination
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CPU + GPU Performance Modeling(20)

Performance Metric Initialization Approximation Iteration

1 Refine performance models with the newly 
obtained results

② GPU ifi d li U i th bt i d② GPU-specific modeling: Using the obtained 
values from streaming execution

– HostToDevice Bandwidth
– DeviceToHost Bandwidth
– GPU Kernel Performance

③ Incorporate streaming results

– for each stream
f h t t t– for each stream restart

– for every stream combination

④ Remove the streaming point obtained using 
DIV2 STRATEGY and approximate bothDIV2 STRATEGY and approximate both 
models
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CPU + GPU Performance Modeling(20)

Performance Metric Initialization Approximation Iteration

Time ImprovementTime 
[ms] Speedup Improvement 

[%]
1 Core 61.3 1 0

2 Cores 33.6 1.82 45.19

4 Cores 21.8 2.82 64.44

3 Cores + 
GPU 
[dummy]

15.4 3.98 74.88

3 Cores + 
GPU [our 12 6 4 86 79 45GPU [our 
approach]

12.6 4.86 79.45
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– APPLICATION OF THE PRESENTED APPROACH TO THE Q6 QUERY
The presented approach was tested for certain corner cases e g Q6 QUERY where it was spotted that the GPU– The presented approach was tested for certain corner cases, e.g. Q6 QUERY, where it was spotted that the GPU 
performance was lower than the performance obtained using a single CPU core

– Nevertheless, our algorithm CORRECTLY PREDICTED IN THE FIRST RUN that it is NOT WORTHWHILE TO SUBSTITUTE one 
core with the execution in the GPU, thus deciding that the best execution in this case is achieved by ONLY using 
the CPU
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DYNAMIC LOAD BALANCINGDYNAMIC LOAD BALANCING
– OBTAINED IN ONLY 2 ITERATIONS AND 0.03 SECONDS

– 200 TIMES FASTER than using exhaustive search

TRADITIONAL APPROACHES FOR PERFORMANCE MODELING
– Approximate the performance using number of points equal to the number of iterations
– In this case, 2 POINTS per each device, p

PRESENTED APPROACH FOR PERFORMANCE MODELING
– Models the performance using MORE THAN 14 POINTS, in this caseModels the performance using MORE THAN 14 POINTS, in this case
– COMMUNICATION-AWARE – schedules in respect to limited and asymmetric interconnection bandwidth
– Employs STREAMING STRATEGIES to overlap communication with computation
– BUILDS SEVERAL PER-DEVICE MODELS AT THE SAME TIME

– OVERALL PERFORMANCE for each device + STREAMING GPU PERFORMANCE

– HOSTTODEVICE BANDWIDTH Modeling
– DEVICETOHOST BANDWIDTH Modeling
– GPU KERNEL PERFORMANCE Modeling
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TO EXPERIMENT DIFFERENT TYPES OF APPLICATIONSTO EXPERIMENT DIFFERENT TYPES OF APPLICATIONS
– Programmed in OpenCL can run on both devices (CPU and GPU)
– In particular, we have in mind a bio-informatic application

TO DERIVE AUTOMATIC STRATEGIES FOR DEFINING THE STREAMING
PROCESS

– We have ideas and we already have done some work  in this direction

TO APPLY CPHC IN MORE HETEROGENEOUS MULTICORE SYSTEMS
– e.g. with reconfigurable processors
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Questions?

Thank youThank you 
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