International Advanced Research Workshop on High Performance Computing, Grids and Clouds 2010
June 21~June 25 2010, Cetraro, Italy

Hongsuk Yi

hsyi@kisti.re.kr

Korea Institute of KISTI Supercomputing Center Science and Technology Information

Outline

- HPC infrastructure and activities in KISTI
- Heterogeneous Computing with GPU
 - What is the scalability
 - Heterogeneous Computing with MPI+CUDA

Where is KISTI?

- KISTI is responsible for national cyber-infrastructure of Korea
 - Mission is enable Discovery through National Projects
- I will don't talk about, today
 - Grid Project (2002~2009) ~ K*Grid
 - e-Science Project (2005 ~)
 - Scientific Cloud Computing (2009~)
 - Research Network Project (2005~)

HPC Infrastructure & Multi-GPU programming

Keep securing/providing world-class supercomputing systems Computing /Network Resource

infras Envir

ercompuling

Cyberinfrastructure Environment Help Korea research communities to be equipped with proper knowledge of Cyber-infra.

Validate newly emerging concepts, ideas, tools, and systems K*Grid, Scientific Cloud

Testbed Center

Value-adding Center Make best use of what the center has, to create new values

History of Supercomputers in Korea

HPC ACT of Korea

- HPC ACT has been started from 2004
 - The ACT is currently awaiting the approval of the National Assembly
- Purpose
 - To provide for a well coordinated national program to ensure continued Korea role in HPC and its applications by
 - ✓ improving the coordination of supercomputing resource on HPC
 - ✓ maximizing the effectiveness of the Korea's networks research (KREONET)
- We can make more contribution by expanding support for
 - National agenda research program in the field of computational science, and development of cyber-infrastructure environment, ad well as applications of extreme scale computation

NCRC

- National Core Research Center for Computational Science and Technology
 - Budget ~ 10M\$
 - Sep. 2010~ (not yet completely determined)
- Application Domains
 - Energy transformation by quantum simulation
 - Migration of pollution by air including yellow sand
 - New material for Energy

Supercomputing Resource (Tachyon)

- Tachyon-II is the 15th ranked in Top500 (June, 2010)
 - Sun Blade x6048, Intel Nehalem procs~26,232 (Memory~157 TB)
 - Peak ~ 307 Tflops (Sustained Peak 274 Tflops)

Providing about 30% of whole computing capacity for public research in Korea

- Users form 200 institutes in Korea
- Utilization: 70~80%
- Little room for large scale grand challenge problems

User Support and Applications

- Support code optimization and parallelization
 - We optimize and parallelize user's code.
 - Performance improvements from 5 times to more than 1,000-fold

Year	2004	2005	2006	2007	2008	2009
Optimization	6	12	13	15	20	20
Parallelization	6	8	11	15	20	25

✓ User's Application through Grand Challenge Problems

Magnetic control of edge spins by K. S. Kim, Nature Nanotech. 3, 408 (2008)

Hydrogen Storage Materials by J. Ihm, *Phys. Rev. Lett.* 97, 056104 (2006)

Supercomputing Resource (GAIA)

GAIA-II is SMP Cluster

- 393th in Top500, 2009.11
- IBM POWER6 5 GHz, Power 595,
- Number of Procs ~ 1,536 (64 cores/node)
- Rpeak~30.7 Tflops (Sustained Peak 23.3 Tflops)
- Memory (8.7 TB)

16GB/core

8GB/core

4GB/core

Hybrid Programming: Multi-Zone NPB

GAIA-2 (IBM p6 5GHz) BT-MZ with class F

- ✓ Big memory ~16GB/cores
- ✓ Bin-packing algorithm
- ✓ The size of zones varies ~20

- ✓ Memory required ~ 5 TB
- ✓ MPI+OpenMP Programming
- ✓ Performance ~ 4.5TF (15%)

GPU computing for visualization

- All KISTI's visualization systems
 - have direct connection to GLORIAD,
 - whose bandwidth is 10 Gbps

Visualization Computer					
Total n	umber of nodes	±150			
CPU	# of CPU cores	800+			
To	tal memory	3.5+ TB			
GPU .	Model	NVIDIA Quadro FX 5600			
	# of GPUs	96+			
Netw ork	Interconnectio n	20 Gbps			
	External network	160+ Gbps			

GPU Computing Activities

- * KSCSE (Korea Society for Computational Sciences and Engineering)
 - Establish as a new computing society in 2009
 - Support GPU computing Forum and workshop
 - ✓ 200 participants, two days, May 2010, Seoul
 - Open for international collaboration on the extreme scale computing

Heterogeneous Computing Testbed

- Heterogeneous Computing System refer to system
 - that use a variety of different types of computational units.
 - A computational unit could be a GPU, co-processor, FPGA
- KISTI Heterogeneous GPU Testbed
 - NVIDIA 2* S1070 (8 GPUs), D870, GTX280

Performance Benefit of GPU Computing

The ratio of operations to elements transfer: O(N)

matrix size (n)

- Matrix-Matrix Multiplication
 - ✓ Operation N³, Transfer 3xN², ,Scaling O(N)
- Matrix-Matrix Addition

400

300

200

100

Performance (Gflops)

✓ Operation N², Transfer 3xN², Scaling O(1)

Image Compression Using SVD

- SVD is an important factoriz ation of matrix
 - with many applications in signal p rocessing and statistics.
 - culaSgeSVD() by using CULA
- RBG full color
 - 2048x2048 total 4,194,304 pixels

Original	12,288 KB		
1 Rank	12 KB		
10 Rank	120 KB		
50 Rank	600 KB		
80 Rank	960 KB		
100 Rank	1,200 KB		

Original

1 Rank

10 Rank

50 Rank

80 Rank

100 Rank

3D FDTD on GPU

- Finite-Difference Time-Domain
 - Divide both space and time into discrete grids
- 3D FDTD Benchmark Results
 - Memory ~ 988 MB, Grid~300x300x240

$$\frac{\partial \mathbf{H}}{\partial t} = -\frac{1}{\mu} \vec{\nabla} \times \mathbf{E}$$

$$\frac{\partial \mathbf{E}}{\partial t} = \frac{1}{\varepsilon} \vec{\nabla} \times \mathbf{H} - \frac{\mathbf{J}}{\varepsilon}$$

RNG and Monte Carlo Algorithm

Ising Model Model and probability weight

$$E = -\sum_{\langle i,j \rangle = 1}^{L} J_{ij} s_i s_j - H \sum_{i=1}^{L} s_i \qquad p = \frac{1}{Z(T)} exp[-E_{\alpha} / k_B T]$$

- √ 1000 MC steps and 512 threads per block independent of block number and (tx=512, ty=1,by=1), bx
- ✓ Size of the warp ~32 and the number of thread block ~ 30

Performance of Ising Model on a GPU

- Use the checkerboard decomposition
 - to avoid the read/write conflicts
 - the spin field and the seed values of the RNGs
 - Divide the spin on the lattice into blocks on the GPU.

Example for a (20x16) lattice

MPI Virtual Topology + CUDA Model

- VT is weak scaling problem
 - ✓ The problem size grows in direct proportion to the num. of cores
 - ✓ Using PBC with MPI_Sendrecv()
 - ✓ Intel Nehalem 8 cores + Nvidia Tesla C1060*8GPUs PCI-E cables

GPU0 GPU1 CPU1 GPU2 GPU3 CPU2 CPU3 GPU5 GPU4 CPU₅ GPU6 CPU6 CPU7 GPU7

Heterogeneous Communication Pattern

There is an extra cudaMemcopy() involved in message passing

GPU scaling Issues

- Achieving good scaling is more difficult with GPUs
 - The kernels are much faster so the MPI communication becomes a larger faction of the overall execution time

Summary

- HPC ACT of Korea is in progress
 - The act is awaiting the approval of the Korea assembly
 - Time for heterogeneous petaflops system in Korea
 - Consider too many things, power, space, user's ability of porting
- In the MPI+CUDA model, achieving good scaling is more difficult than pure MPI since
 - the kernels are still faster on the GPU
 - There is an another communication over head between CPU and GPUs

Thank You!