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Infrastructure as a ServiceInfrastructure as a Service

...

Stratosphere

Database-inspired approach 

Analyze, aggregate, and query

Textual and (semi-) structured 
data

Research and prototype a 
web-scale data analytics 
infrastructure

Query Processor

Explore the power of Cloud computing for complex 
information fusion
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Current Research 
Landscape

●
 

Large scale data management is area of vivid research
■

 
Google, Yahoo!, Microsoft, Facebook, IBM, UC Berkeley, UC Irvine, etc.

Pig,
Jaql,
Hive

Pig,
Jaql,
Hive

Higher-Level
Language

Parallel 
Programming
Model

Execution
Engine

HadoopHadoop

Scope,
DryadLINQ

Scope,
DryadLINQ

AQL,
Pig,
Hive

AQL,
Pig,
Hive

SIMPLE/
Sopremo
SIMPLE/
Sopremo

PACTPACT

DryadDryad NepheleNephele

Map/Reduce

Hadoop Stack
(Yahoo!, Facebook)

Dryad Stack
(Microsoft)

Stratosphere Stack
(TU, HU, HPI)

Asterix Stack
(UCI, UCR, UCSD)

HyracksHyracks

AlgebricksAlgebricks
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Outline

●
 

Overview Stratosphere

●
 

Massive-parallel execution with Nephele

●
 

Topology detection and streaming

●
 

Conclusions
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Stratosphere in a Nutshell

●
 

PACT Programming Model
■

 
Declarative definition of data 
parallelism

■
 

Centered around second-order 
functions

 Generalization of map/reduce

●
 

Nephele
■

 
Executes schedules compiled from 
PACTs

■
 

Exploits scalability/flexibility of clouds
■

 
Fault tolerance mechanisms

■
 

Designed to run on top of IaaS
■

 
Heterogeneity through different VM 
types

Nephele

PACT Compiler

Infrastructure‐as‐a‐Service
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Result

Data
Storage

Nephele 

 
Schedule

Parallel

 
Execution 

 
Engine

Parallel Execution 

 
Model

Architecture: Nephele Layer

●
 

Key Concepts
■

 
Massively parallel, 
fault-tolerant engine

Nephele Layer
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Result

Statistics

Data
Storage

Cost‐based 

 
Parallelizer

PEPs

Nephele 

 
Schedule

PEP

Parallel

 
Execution 

 
Engine

Key/Value

 
Programming Model

Parallel Execution 

 
Model

PEP

 
Annotation

Architecture: PACT Layer

●
 

Key Concepts
■

 

Massively parallel, 
fault-tolerant engine

■

 

Declarative specification 
through parallelization 
contracts (PACTs)

Nephele Layer

PACT Layer
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Result

Statistics

Data
Storage

Cost‐based 

 
Parallelizer

PEPs

Nephele 

 
Schedule

PEP

Parallel

 
Execution 

 
Engine

Continuous 

 
Optimization 

 
Engine

Key/Value

 
Programming Model

Parallel Execution 

 
Model

PEP

 
Annotation

Architecture: Continuous 
Optimization

●
 

Key Concepts
■

 

Massively parallel, 
fault-tolerant engine

■

 

Declarative specification through

 parallelization contracts (PACTs)
■

 

Adaptive execution

Nephele Layer

PACT Layer
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Result

Statistics

Data
Storage

Cost‐based 

 
Parallelizer

Robustness 

 
Optimizer

PEPs

Nephele 

 
Schedule

PEP

Parallel

 
Execution 

 
Engine

Continuous 

 
Optimization 

 
Engine

Key/Value

 
Programming Model

Parallel Execution 

 
Model

PEP

 
Annotation

Architecture: Robustness

●
 

Key Concepts
■

 

Massively parallel, 
fault-tolerant engine

■

 

Declarative specification through

 parallelization contracts (PACTs)
■

 

Adaptive execution
■

 

Robust Optimization

Nephele Layer

PACT Layer

9Odej Kao – Stratosphere – Data Management on the Cloud



Result

Statistics

Data
Storage

Cost‐based 

 
Parallelizer

Robustness 

 
Optimizer

PEPs

Nephele 

 
Schedule

PEP

SIMPLE 

 
Program

Parallel

 
Execution 

 
Engine

Sopremo

Continuous 

 
Optimization 

 
Engine

Semantically Rich 

 
Programming Model

Key/Value

 
Programming Model

Parallel Execution 

 
Model

PEP

 
Annotation

Architecture: SOPREMO 
Layer

●
 

Key Concepts
■

 

Massively parallel, 
fault-tolerant engine

■

 

Declarative specification through

 parallelization contracts (PACTs)
■

 

Adaptive execution
■

 

Robust Optimization
■

 

Semi-structured/text data 
model

■

 

Uncertainty 
■

 

Declarative data flow 
programs with compute- and 
data intensive operations

■

 

Information extraction 
■

 

Data cleansing

Nephele Layer

PACT Layer

SOPREMO Layer

SIMPLE

 
Parser
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What is a PACT?

●
 

Second-order function that defines properties on the input 
and output data of its associated first-order function

●
 

Input Contract
■

 
Generates independently processable subsets of data

■
 

Generalization of map/reduce
■

 
Enforced by the system

●
 

Output Contract
■

 
Describes properties of the output of the first-order function

■
 

Use is optional but enables certain optimizations
■

 
Guaranteed by the user

11

First‐order function

 (user code)
Input

 Contract
Output

 Contract
Data Data
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Map and reduce as PACTs

●
 

Map and reduce are PACTs in our context

●
 

Map
■

 
All pairs are independently 
processed

●
 

Reduce
■

 
Pairs with identical key are grouped

■
 

Groups are independently processed

Input set
Independent 

 
subsets

Key Value
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PACTs beyond Map and 
Reduce

●
 

Cross
■

 
Cartesian product of multiple inputs is built

■
 

All combinations are processed independently

●
 

Match
■

 
Multiple inputs

■
 

All combinations of pairs with identical key 
over all inputs are built and processed 
independently

■
 

Contract resembles an equi-join on the key

●
 

CoGroup
■

 
Pairs with identical key are grouped for each 
of multiple input

■
 

Groups of all inputs with identical key 
are processed together
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Outline

●
 

Cloud Computing for Data Management

●
 

Massive-parallel execution with Nephele

●
 

Topology detection and streaming

●
 

Conclusions
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Research Question

15

“How to improve the efficiency of massively parallel data 
processing on Infrastructure as a Service (IaaS) platforms”

●
 

Opportunities: Elasticity
■

 
Scale-up/scale-down to respond to changes in the workload

■
 

Exploit resource heterogeneity to improve cost efficiency

●
 

Challenges: Loss of control due to required virtualization
■

 
Shared infrastructure, loss of knowledge about I/O capacities

■
 

Network topology between machines is unknown

Odej Kao – Stratosphere – Data Management on the Cloud



Requirements

●
 

Shared resource management
■

 
Abandon assumption that execution engine “owns”

 
nodes

■
 

Instead nodes are temporarily “leased”
IaaS Cloud

Parallel
Execution
Engine

●
 

Job must express tasks‘
 

data dependencies
■

 
Which task‘s input is required as which task‘s output

■
 

Required to safely terminate virtual machines

●
 

Mapping between tasks and VM types
■

 
Which task shall run on which type of virtual machine?

■
 

Information could be provided by programmer
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Research Prototype: 
Nephele

Public Network (Internet)

Cl
ou

d 
M
gm

t.
 In
te
rf
ac
e

Pe
rs
is
te
nt
 S
to
ra
ge

Private / Virtualized Network

IaaS Cloud

ClientClient

Master

Worker

Workload over time

Worker Worker

●
 

Standard master worker pattern
●

 
Workers can be allocated on demand
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Nephele Job Description

●
 

Nephele job is represented as DAG
■

 
Vertices represent tasks

■
 

Edges denote communication channels

●
 

Mandatory information for each vertex
■

 
Task program, (Input/output data location)

●
 

Optional information for each vertex
■

 
Degree of parallelism

■
 

Degree of parallelism per node
■

 
Node type  (#CPU cores, RAM…)

■
 

Channel types, …

Output

 

1

Task 1

Input 1
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Internal Scheduling 
Representation

Output

 

1

Task 1

Input 1

●
 

Explicit parallelization
■

 
Individual degree of parallelization for each task

●
 

Explicit assignment to VMs

●
 

Communication channels
■

 
Network channels

■
 

In-memory channels
■

 
File channels
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Experimental Evaluation

Sort

6 VMs6 VMs 66

Sort

6 VMs6 VMs 2266 11

●
 

MR jobs on Hadoop ●
 

MR jobs on Nephele
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CPU Bottlenecks

Challenges for Exploiting 
Elasticity

●
 

Which degree of parallelization is suitable for which task?
■

 
Cloud philosophy: one core x 1000 hours = 1000 cores x one hour

■
 

Hard to anticipate for arbitrary user code, must be assessed online

Output 1

Task 1

Input 1

Task 1: Avg. CPU Util.:

Output 1: Avg. CPU Util.:

Input 1: Avg. CPU Util.:

I/O Bottlenecks

Output 1: Avg. CPU Util.:

Input 1: Avg. CPU Util.:

Task 1: Avg. CPU Util.:
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Bottleneck Detection

●
 

Profiling component runs on every worker node

●
 

Profiling provides
■

 
pt(vi ): % of time parallel instance i of vertex v used its given CPU time

 during last t seconds (seq. code, independence of par. instances)
■

 
st(ej ): % of time parallel instance j of edge e was saturated during last t 

seconds (capacity contr. channels)

●
 

Values of pt(vi ) and st(ej ) are propagated to master every t seconds
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Bottleneck Detection 
Algorithm

LRTS  ReverseTopologicalSort(G)

for all v in LRTS do
v.isCpuBottleneck  IsCPUBottleneck(v, G)

end for

if Ǝv ϵ

 

LRTS : v.isCPUBottleneck then
for all v in LRTS do

Ev = {(v,w) | w ϵ

 

VG � (v,w) ϵ

 

EG }
for all e ϵ

 

Ev do
e.isIOBottleneck  IsIOBottleneck(e, G)

end for
end for

end if

Criteria I/O bottleneck:
●

 

st(e) > β

 

(β

 

= 90%)
●

 

No successor edge of e 
is I/O bottleneck

Criteria CPU bottleneck:
●

 

pt(v) > α

 

(α

 

= 90%)
●

 

No successor vertex of v 
is CPU bottleneck

st(e1 ) = 99%

pt(v1 ) = 35%

pt(v2 ) = 99%

pt(v3 ) = 10% pt(v4 ) = 27%

st(e2 ) = 16% st(e3 ) = 9%

11 22

33

44

CPU
Bottleneck

CPU
Bottleneck
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Evaluation (1/2)

●
 

Evaluation job
■

 
Conversion of article DB

■
 

40 GB of bitmap images to PDF

●
 

Properties of job
■

 
Different computational 
complexities of tasks

■
 

Each parallel instance runs on 
separate VM (with 1 CPU core)

■
 

Input data reside on external 
storage

File Reader

OCR Task

PDF Creator
Inverted

Index Task

Inverted
Index WriterPDF Writer

●
 

Goal of evaluation
■

 
Find ideal degree of parallelization for each task
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Evaluation (2/2)

CPU Bottleneck

I/O Bottleneck

Duration: 5:10 h
4 VMs

Duration: 5:10 h
4 VMs

Duration: 1:15 h
7 VMs

Duration: 1:15 h
7 VMs

Duration: 0:25 h
22 VMs

Duration: 0:25 h
22 VMs

Duration: 0:24 h
23 VMs

Duration: 0:24 h
23 VMs
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Outline

●
 

Cloud Computing for Data Management

●
 

Massive-parallel execution with Nephele

●
 

Topology detection and adaptive compression

●
 

Conclusions
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●
 

The network is a scarce resource
■

 
Used for communication among nodes

■
 

Used by distributed file system
■

 
Possibly used by other virtual machines

●
 

Network performance hard to predict
■

 
Available throughput may change over time

■
 

Can lead to I/O bottlenecks starvation

●
 

Idea: Handle varying I/O performance
 on application layer

■
 

Adaptive compression
■

 
Topology detection

Motivation

Pa
ra
lle
l D

at
a 
Fl
ow

Pa
ra
lle
l D

at
a 
Fl
ow

I/O Bottleneck
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●
 

Selection of different compression algorithms
■

 
Each algorithm has different time/size ratio

●
 

Calibration of decision model during 
data transfer
■

 
Try out different compression levels

■
 

Learn from previous compression decisions
■

 
Reward good decisions, penalize bad ones

Adaptive Online 
Compression

ApplicationApplication I/O Layer of OSI/O Layer of OS

Adaptive Online CompressionAdaptive Online Compression

No comp.
Algo. X
Algo. Y
Algo. Z

No comp.
Algo. X
Algo. Y
Algo. Z

Decision ModelDecision Model





Uncompressed
Data

Uncompressed
Data

Compressed
Data

Compressed
Data
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Detecting network topology

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Rack
Switch 1

Rack
Switch 2

Rack
Switch 3

Rack
Switch 4

Backbone Switch / IP Router

Server 2

VM 1 VM 2 VM m
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Detecting network topology

Rack
Switch 1

Rack
Switch 2

Rack
Switch 3

Rack
Switch 4

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router
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Detecting network topology

Rack
Switch 3

Rack
Switch 4

Rack
Switch 1

Rack
Switch 2

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router

> 1 GBit/s (no actual bits on the wire)

~ 1 GBit/s (regular Ethernet)

< 1 GBit/s
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Detecting network topology

Rack
Switch 3

Rack
Switch 4

Rack
Switch 1

Rack
Switch 2

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router●
 

Cloud costumer‘s perspective:
■

 
IP addresses to VMs only  Underlying network topology is not revealed

■
 

Data locality cannot be exploited inside application

●
 

Can we infer the physical network topology from the VMs?
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●
 

Rely on assistance of internal network nodes
■

 
Use ICMP, traceroute-like tools

Topology Inference (TI) from 
End Nodes

●
 

Do not rely on assistance of internal network nodes
■

 
Observe network behavior from end nodes only

■
 

Use observations to infer existence of internal network nodes
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●
 

One sender node, two or more receiver nodes
■

 
Connected through unknown, tree-like network

■
 

Sender sends probe packets to receivers
■

 
Receivers observe link characteristics like throughput, delay, packet loss

TI based on End-to-End 
Measurements

Sender

Receiver 

 
1

Receiver 

 
2

Switch 1

Switch 2

Switch 3 Switch 4

Unknown physical routing tree

Individual
loss rate:
10%

Individual
loss rate:
20%

Sender

Receiver 

 
1

Receiver 

 
2

Internal
node 1

Inferred logical routing tree

Correlation of
individual loss rates
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●
 

Packet loss hard to observe due to high throughput links
●

 
Virtualization destroys packet correlation on shared link

Link Characteristic Packet 
Loss

Unable to observe packet loss with unmodified 

 
device drivers

Poor correlation of packet loss on 

 
shared link
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●
 

Poor delay 
correlation for KVM 
with unmodified 
device drivers

●
 

Modest increase of 
interarrival times 
for both KVM and 
XEN 
(paravirtualization)

Link Characteristic Delay
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Link Characteristic Delay 
(RTT)

Statistically significant gap 

 
between intra‐

 

and intra‐host 

 
RTT for XEN paravirt.

Statistically significant gap 

 
between intra‐

 

and intra‐host 

 
RTT for KVM paravirt.

High variance of RTTs for KVM 

 
full virt.

●
 

RTT can be used to detect co-located VMs with paravirt.
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●
 

Binary trees fit measured data most closely
■

 
Highest degree of freedom

■
 

„Overfitted“
 

version of actual network topology

Inferred Tree is always 
Binary

1 2 3 4 5 6 7 8

9 1

 
0

1

 
1

1

7

3

5

2

4 6

8

1

 
1

Wrong 

 
root node

Wrong root 

 
node

Non‐existent 
inner nodes
Non‐existent 
inner nodes

Physical routing tree Inferred logic routing tree
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●
 

Remember: Data center networks have regular structure
●

 
Idea:
■

 
Determine depth of each leaf node

■
 

New root minimizes difference between smallest and highest depth

Re-Rooting the Inferred 
Tree

1

2

3 4

7

5

6

8

1

 
1

2

3

5 5 5

6

7 7

Smallest 

 
depth: 2

Highest 

 
depth: 7

Minimizes depth 

 
difference

1

3

2

4

7

5

6

8

1

 
1 Re‐root 11
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Limiting Depth of Inferred 
Tree

1

2 3 4

7

5

6

8

1

 
1

Tree depth: 6

●
 

After Re-rooting, depth of the inferred tree is reduced
■

 
Assumption: Tree depth greater than d is unlikely to occur in data center

●
 

Idea:
■

 
Until tree depth ≤

 
d, identify leaf node with highest depth

■
 

Merge parent and parent’s parent
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Limiting Depth of Inferred 
Tree

1

2 3 4

6

5 7 8

1

 
1

Tree depth: 5

●
 

After Re-rooting, depth of the inferred tree is reduced
■

 
Assumption: Tree depth greater than d is unlikely to occur in data center

●
 

Idea:
■

 
Until tree depth ≤

 
d, identify leaf node with highest depth

■
 

Merge parent and parent’s parent
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Limiting Depth of Inferred 
Tree

1

2 3 4

85 6 7

1

 
1

Tree depth: 4

●
 

After Re-rooting, depth of the inferred tree is reduced
■

 
Assumption: Tree depth greater than d is unlikely to occur in data center

●
 

Idea:
■

 
Until tree depth ≤

 
d, identify leaf node with highest depth

■
 

Merge parent and parent’s parent
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Limiting Depth of Inferred 
Tree

1 2 3 4 85 6 7

1

 
1

1 2 3 4 85 6 7

1

 
1

Physical routing tree Inferred logic routing tree

Robinson‐Foulds 

 Distance: 1.5

●
 

After Re-rooting, depth of the inferred tree is reduced
■

 
Assumption: Tree depth greater than d is unlikely to occur in data center

●
 

Idea:
■

 
Until tree depth ≤

 
d, identify leaf node with highest depth

■
 

Merge parent and parent’s parent
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Current Work: Streaming

●
 

Nephele and PACTs currently focus on batch-job 
workloads
■

 
Usual goal: „minimize time-to-solution“

■
 

Translates to „maximize throughput“

●
 

What about streaming workloads?
■

 
Possible with Nephele, but (as of now) 
not PACTs

■
 

May have different goals
♦

 
Meet pipeline latency and throughput requirements

♦
 

Minimize pipeline latency, don‘t care about throughput
♦

 
Max/Min other custom metrics
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Conclusion

●
 

Parallel data processing on clouds is promising research area
■

 
Elasticity/cost model provides new use cases

●
 

Future work
■

 
Streaming and profile comparisons

■
 

CloudNets –
 

move part of the computation into the networks

●
 

Plenty of opportunities for future work
■

 
Currently 20+ developers, Apache License

■
 

Check www.stratosphere.eu for downloads, tutorials
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Thank you
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