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'.E Stratosphere

Explore the power of Cloud computing for complex
Information fusion
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Database-inspired approach
Analyze, aggregate, and query

Textual and (semi-) structured
data

Research and prototype a
web-scale data analytics
infrastructure



Current Research
| Landscape

e Large scale data management is area of vivid research
m Google, Yahoo!, Microsoft, Facebook, IBM, UC Berkeley, UC Irvine, etc.

Higher-Level
Language

AQL’ SIMPLE/
Pig, Sopremo
Hive

Parallel

Programming Map/Reduce Algebricks PACT

Model

Scope,
DryadLINQ

Execution

Engine { Nephele ’

Hadoop Stack Dryad Stack Asterix Stack Stratosphere Stack
(Yahoo!, Facebook) (Microsoft) (UCI, UCR, UCSD) (TU, HU, HPI)
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ﬂﬁ Outline

e Overview Stratosphere

e Massive-parallel execution with Nephele

e Topology detection and streaming

e Conclusions

Odej Kao — Stratosphere — Data Management on the Cloud



.. Stratosphere in a Nutshell

e PACT Programming Model

|
N Declara_tlve definition of data e
parallelism e
m Centered around second-order ]
functions
— Generalization of map/reduce o l
2ty

o0

m Executes schedules compiled from
PACTs

Exploits scalability/flexibility of clouds
Fault tolerance mechanisms
Designed to run on top of [aaS

Heterogeneity through different VM
types

Infrastructure-as-a-Service
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[ E Architecture: Nephele Layer

e Key Concepts

m Massively parallel,
fault-tolerant engine

B ...

Nephele
Schedule

AV

Parallel Execution
Model

Parallel
Execution
Engine

Data
Storage
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[ E Architecture: PACT Layer

e Key Concepts

m Massively parallel,
fault-tolerant engine

m Declarative specification
through parallelization

Contracts (PACTS) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIII;(IerI/.V.a.I:l;.
PEP
Annotation PEPs Programming Model

Cost-based

Parallelizer

<J_ PEP

PACT Layer

T L T R L LT

Parallel Execution
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Nephele
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Nephele Layer
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Architecture: Continuous
Optimization

e Key Concepts

Massively parallel,
fault-tolerant engine

Declarative specification through
parallelization contracts (PACTS)

Adaptive execution

PEP Key/Value
Annotation PEPs Programming Model

Cost-based

<J_ PEP

Parallelizer
Continuous -I |. PACT Layer
M Opignmlizr?:on Parallel Execution
& Nephele Viodel

Schedule
Statistics {}
Parallel
—> Execution
Engine _I+ Result

Data
Storage

Nephele Layer
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l E Architecture: Robustness

e Key Concepts

m Massively parallel,
fault-tolerant engine

m Declarative specification through 3| Robustness
parallelization contracts (PACTs) —»| Optimizer
Adaptive eXeCutiOn EEn EEEEEEER IIIIIIIIPIEIPIIIIIIIII|_|IIIIIIIIIIIIIIIII;(IerI/IvlalI:l;.
Robust Optimization Annotation PEPs Programming Model

Cost-based

<J_ PEP

Parallelizer
Continuous -I |. PACT Layer
= Op':nmlizr?:on Parallel Execution
8 Nephele Viodel

Schedule
{}
; Parallel
Execution
Engine _I—> Result

Data
Storage

Nephele Layer
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e Key Concepts

Massively parallel,
fault-tolerant engine

Declarative specification through
parallelization contracts (PACTS)

Adaptive execution
Robust Optimization

Semi-structured/text data
model

Uncertainty

Declarative data flow
programs with compute- and
data intensive operations

Information extraction
Data cleansing

Layer

Architecture: SOPREMO

SIMPLE

SIMPLE
Parser Program
| |
Sopremo Semantically Rich
A4 Programming Model
>»| Robustness
| Optimizer
I - 'Zﬂ SOPREMO Layer
PEP Key/Value

PEPs Programming Model

Continuous
Optimization
Engine

EEnm 6

Statistics
—»

Annotation
PEP
Cost-based ¢ I
Parallelizer PACT Layer
II |. Parallel Execution
Nephele Model
Schedule
Parallel
Execution
Engine _I+ Result \
Data
Storage Nephele Layer
v
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I.E What 1s a PACT?

e Second-order function that defines properties on the input
and output data of its associated first-order function

First-order function
(user code)

e |nput Contract

m Generates independently processable subsets of data
m Generalization of map/reduce
m Enforced by the system

e Output Contract
m Describes properties of the output of the first-order function
m Use is optional but enables certain optimizations
m Guaranteed by the user

Odej Kao — Stratosphere — Data Management on the Cloud 11



L1

Map and reduce as PACTs

e Map and reduce are PACTs in our context

e Map

m All pairs are independently
processed

e Reduce
m Pairs with identical key are grouped
m Groups are independently processed

Input set

Key Value

'Eafﬁ
g

ILL
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q PACTs beyond Map and
| E Reduce

e Cross Bl

"'y'l e sy 1
m Cartesian product of multiple inputs is built > I I 1
m All combinations are processed independently

e Match
m Multiple inputs

m All combinations of pairs with identical key
over all inputs are built and processed
independently

m Contract resembles an equi-join on the key

e CoGroup

m Pairs with identical key are grouped for each
of multiple input

m Groups of all inputs with identical key
are processed together
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ﬂﬁ Outline

e Massive-parallel execution with Nephele
e Topology detection and streaming

e Conclusions
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[ E Research Question

“How to improve the efficiency of massively parallel data
processing on Infrastructure as a Service (laaS) platforms”

e Opportunities: Elasticity
m Scale-up/scale-down to respond to changes in the workload
m Exploit resource heterogeneity to improve cost efficiency

e Challenges: Loss of control due to required virtualization

m Shared infrastructure, loss of knowledge about I/O capacities
m Network topology between machines is unknown
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[ E Requirements

e Shared resource management

Parallel
EXEEC‘{“O” m Abandon assumption that execution engine “owns” nodes
ngine . “ ”
== m Instead nodes are temporarily “leased
laaS Cloud

e Job must express tasks’ data dependencies
m Which task's input is required as which task's output
m Required to safely terminate virtual machines

e ?
o e

- = | e Mapping between tasks and VM types
—> 08
R m Which task shall run on which type of virtual machine?
e ' m Information could be provided by programmer
m - N
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Research Prototype:
| E Nephele

Workload over time

e Standard master worker pattern
e Workers can be allocated on demand

Client

Public Network (Internet)

laaS Cloud

Master

Private / Virtualized Network
I I N .

Cloud Mgmt. Interface

()
o]0}
©
| -
(@)
)
)
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C
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)
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|
)
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I.E Nephele Job Description

Output 1

e Nephele job is represented as DAG
m Vertices represent tasks
m Edges denote communication channels

e Mandatory information for each vertex
m Task program, (Input/output data location)

e Optional information for each vertex
Degree of parallelism

Degree of parallelism per node

Node type (#CPU cores, RAM...)

n
[
n
m Channel types, ...
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Internal Scheduling
Representation

e EXxplicit parallelization
m Individual degree of parallelization for each task

e EXxplicit assignment to VMs

e Communication channels
m Network channels
m In-memory channels
m File channels
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..E Experimental Evaluation

Average CPU Utilization [%]
Aggregate 1
Aggregate 1

0 20 40 80 g0 100 1] 20 40 &0 80 100
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e MR jobs on Hadoop e MR jobs on Nephele

100 150 200 250 300 350 400 450 500

50

1]

Average Network Traffic among VMs [MBit/s]

Odej Kao — Stratosphere — Data Management on the Cloud

21




Challenges for Exploiting
E Elasticity

e \Which degree of parallelization is suitable for which task?
m Cloud philosophy: one core x 1000 hours = 1000 cores x one hour
m Hard to anticipate for arbitrary user code, must be assessed online

Output 1: Avg. CPU Util.: \ Output 1: Avg. CPU Util.:

| Task 1: Avg. CPU Util.: Task 1: Avg. CPU Util.
N / B ]
[‘ B] Input 1: Avg. CPU Util.. Input 1: Avg. CPU Util.:
CPU Bottlenecks I/O Bottlenecks
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'.E Bottleneck Detection

e Profiling component runs on every worker node

e Profiling provides

m pt(v;): % of time parallel instance i of vertex v used its given CPU time
during last t seconds (seq. code, independence of par. instances)

m st(e): % of time parallel instance | of edge e was saturated during last t
seconds (capacity contr. channels)

e Values of pt(v;) and st(e;) are propagated to master every t seconds
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Bottleneck Detection
| Algorithm

Lrrs € ReverseTopologicalSort(G)

for all vin Lgyg do

v.isCpuBottleneck < IsCPUBottleneck(v, G) 1 2
end for
if v € Lgrs : V.iSCPUBOottleneck then st(e,) = 16% st(e,) = 9%

for all vin Lgrg do
E, = {(v.w) |weVg [ (v,w) € Ec}

for all e e E, do CPU
e.islOBottleneck < IslOBottleneck(e, G) Bottleneck Jf 3
end for
end for st(e.) = 99%

end if 1

Criteria CPU bottleneck: | Criteria 1/O bottleneck:

e pt(v) >a(a=90%) e st(e) >B (B=90%)

e No successor vertex of v e No successor edge of e 4
is CPU bottleneck is 1/0 bottleneck
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[ E Evaluation (1/2)

e Evaluation job
m Conversion of article DB
m 40 GB of bitmap images to PDF

Inverted
Index Writer

PDF Writer

Inverted
Index Task

e Properties of job PDF Creator

m Different computational
complexities of tasks

m Each parallel instance runs on
separate VM (with 1 CPU core) OCR Task

m Input data reside on external
storage

e Goal of evaluation
m Find ideal degree of parallelization for each task

File Reader
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Evaluation (2/2)

a‘ OCR Task il‘ PDF Creator il‘ Inverted Index Task il‘
OCR Task - 1

File Reader| |
S 80%]
> 60%

© 40%¢
2 20%
< 0% : : :

b) OCR Task (4), PDF Creator (1), Inverted Index Task (1)
PDF c.-eamr# ' ' '
OCR Taskf :
: : Duration: 5:10 h

File Rgaader
4 \/Ms

§ 80%F ) e :

> 60%] T Duration: 1:15 h

O 40%}

S 20v%) 7 VMs

< 0% - -

c) OCR Task (16), PDF Creator (4), Inverted Index Task (1)

PDF Creator ' '
File Rgaderm : :

CPU Bottleneck

S 80% -
2 60% Duration: 0:25 h

I/0O Bottleneck

920%
0%

q} OCR Task (16), PDF Creator {|5}, Inverted Index Task (1)

PDF Creator |
File R!aader

= 80% . I
> 60% Duration: 0:24 h
S 0%
g“:o% 23 VMs
0%g 5000 10600 15000
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ﬂﬁ Outline

e Topology detection and adaptive compression

e Conclusions
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l E Motivation

e The network Is a scarce resource

m Used for communication among nodes

m Used by distributed file system
m Possibly used by other virtual machines

e Network performance hard to predict
m Available throughput may change over time

m Can lead to |I/O bottlenecks starvation
e |dea: Handle varying I/O performance

on application layer
m Adaptive compression
m Topology detection

¢

¢

€
Y

Parallel Data Flow

I/O Bottleneck
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Adaptive Online
| E Compression

e Selection of different compression algorithms
m Each algorithm has different time/size ratio

Adaptive Online Compression

Uncompressed Compressed L4 No comp.
Data Data O Algo. x /O Layer of OS
L4 Algo. Y

O Algo.z

Decision Model

e Calibration of decision model during
data tranSfer |:> Decision Model |:>
m Try out different compression levels
m Learn from previous compression decisions Feedback Data
m Reward good decisions, penalize bad ones
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l. Detecting network topology

Backbone Switch / IP Router

Rack Rack
Switch 2 Switch 3

D oono

berver 2

Rack
Switch 4

o
o

]
.

e

\

Odej Kao — Stratosphere — Data Management on the Cloud

30




.. Detecting network topology

Backbone Switch / IP Router

Rack

Switch 3 \

A,

/E\

J(=[=

=

Rack

Switch 4 \

A,

/E\

Server Server Server - Server Server Server Server Server
---{‘ A == A DEny,
7 = / 7
1] 1]
] HEE
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[ E Detecting network topology

Backbone Switch / IP Router

Rack Rack Rack Rack
Switch 1 Switch 2 Switch 3 Switch 4

~ 1 GBit/s (regular Ethernet)

Server Server Server Server Server Server Server Server

|
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E Detecting network topology

e Cloud costumer's perspective:

m |P addresses to VMs only = Underlying network topology is not revealed
m Data locality cannot be exploited inside application

o Can we |nfer the phyS|caI network topology from the VMs’?

13 I I e 13 L L I I ]
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Topology Inference (T1) from
l E End Nodes

e Rely on assistance of internal network nodes
m Use ICMP, traceroute-like tools

Benefits Challenges

v Simple x Unable to detect switches/bridges

v Robust for IP-level topologies x Anonymous routers

e Do not rely on assistance of internal network nodes

m Observe network behavior from end nodes only
m Use observations to infer existence of internal network nodes

v' > 10 years research history for WANs x No research for data center networks

v’ Potentially identifies switches/bridges \.* Impact of virtualization unknown

—
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Tl based on End-to-End
l Measurements

e One sender node, two or more receiver nodes
m Connected through unknown, tree-like network
m Sender sends probe packets to receivers
m Receivers observe link characteristics like throughput, delay, packet loss

Correlation of Internal

% individual loss rates node 1

Individual Individual
loss rate: loss rate:
10% 20%

Unknown physical routing tree Inferred logical routing tree

Odej Kao — Stratosphere — Data Management on the Cloud
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Link Characteristic Packet
E oSS

e owETIl koSS rabe (KO ull virt)

o= T-puncked hoss rabe (KW Tull virt.)
—&—  pwerall ioss rabe (KM parawirt )
- -packed koss rate (KM parar )
- owerall loss rabe (XEN paravirt

- 1=packed loss rate (XEM paravint )

15

10

e Poor correlation of packet loss on
shared link
— , c geraenBoo @ | Unable to observe packet loss with unmodified
o PR P ol k- S st - T S . .
| . . . . device drivers

D 200 400 B00 800

Rate of los probe packets [%]

Background trafic among Vs [in MB#s]

e Packet loss hard to observe due to high throughput links
e Virtualization destroys packet correlation on shared link
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I.E Link Characteristic Delay

Interarrival imes fin millisec.)

10

01

0.0

0.0

e Poor delay

correlation for KVM
.= with unmodified
device drivers

e Modest increase of
interarrival times
—=— infra-host interarmival time (KM full virt. ) for bOth KVM and

- inter-host interamival time (VM full virt.)
~&— intra-host interamival time (KVM paravirt.) X E N
d= inter=-host interarmival time 1KV p-al"-a"ﬂﬂ ]

B 8 ol

.-I—._E

P
Ak o
53
-

B— intra=host inleramval time (XEN paravir. )

2 ket o ko (paravirtualization)

T T T T T
0 200 400 600 800

Background traffic among nodes [in MBit's]
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Link Characteristic Delay
(RTT)

™

& . ot RTT VMl i) ¥ Statistically significant gap
et FIT o et | between intra- and intra-host

8 o Inter-hoct RTT EN bt _ RTT for XEN paravirt.
—

&= inter-host RTT (KM paravirt. ) I
inter<hast RTT (XEM paravird.)

",

&  ;
E X High variance of RTTs for KVM
E v full virt.
E _ . _E - _
= b ’é i [
— 3 4 — 4 —
Fo 1
- - - & em-m-Eom-T-X Statistically significant gap
j 1 L S I between intra- and intra-host
& AR T = ,E, PEEP RTT for KVM paravirt.
o 200 400 G600 BDO

Backgrownd traffic among nodes [in MBit's]

e RTT can be used to detect co-located VMs with paravirt.
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Inferred Tree Is always
| E Binary

e Binary trees fit measured data most closely
m Highest degree of freedom

m ,Overfitted” version of actual network topology Wrong
root node

Non-existent
inner nodes

-

Physical routing tree Inferred logic routing tree
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Re-Rooting the Inferred
l E Tree

e Remember: Data center networks have regular structure

e |dea:
m Determine depth of each leaf node

A

ew root minimizes difference between smallest and highest depth
Smallest
depth: 2 Minimizes depth
difference

Cem>

Re-root 11

yd

Highest
depth: 7

Odej Kao — Stratosphere — Data Management on the Cloud

40




Limiting Depth of Inferred
l E Tree

e After Re-rooting, depth of the inferred tree is reduced
m Assumption: Tree depth greater than d is unlikely to occur in data center

e |dea:
m Until tree depth < d, identify leaf node with highest depth
m Merge parent and parent’s parent

Z\

T i

Tree depth: 6—=

N ——
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Limiting Depth of Inferred
l E Tree

e After Re-rooting, depth of the inferred tree is reduced
m Assumption: Tree depth greater than d is unlikely to occur in data center

e |dea:
m Until tree depth < d, identify leaf node with highest depth
m Merge parent and parent’s parent

Tree depth: 5—= /\

/%I
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Limiting Depth of Inferred
l E Tree

e After Re-rooting, depth of the inferred tree is reduced
m Assumption: Tree depth greater than d is unlikely to occur in data center

e |dea:
m Until tree depth < d, identify leaf node with highest depth
m Merge parent and parent’s parent

Tree depth: 4—=

1 2\

(1) oidnmn
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Limiting Depth of Inferred
l E Tree

e After Re-rooting, depth of the inferred tree is reduced
m Assumption: Tree depth greater than d is unlikely to occur in data center

e Idea:
m Until tree depth < d, identify leaf node with highest depth
m Merge parent and parent’s parent

Robinson-Foulds
Distance: 1.5

Z\

Physical routing tree Inferred logic routing tree
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'.E Current Work: Streaming

e Nephele and PACTs currently focus on batch-job
workloads

m Usual goal: ,minimize time-to-solution”
m Translates to ,maximize throughput®

e \What about streaming workloads?

m Possible with Nephele, but (as of now)
not PACTs
m May have different goals
¢ Meet pipeline latency and throughput requirements
¢+ Minimize pipeline latency, don't care about throughput
¢ Max/Min other custom metrics
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' E Conclusion

e Parallel data processing on clouds is promising research area
m Elasticity/cost model provides new use cases

e Future work
m Streaming and profile comparisons
m CloudNets — move part of the computation into the networks

e Plenty of opportunities for future work
m Currently 20+ developers, Apache License E

[=]

m Check www.stratosphere.eu for downloads, tutorials

Eli-
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