
Stratosphere – Data
Management on the Cloud

Odej Kao
Complex and Distributed IT Systems

Computer Science and Electrical Engineering
Technische Universität Berlin

This presentation is a joint work with Volker Markl, Andreas Kliem, Björn Lohrmann
and Daniel Warneke

Infrastructure as a ServiceInfrastructure as a Service

...

Stratosphere

Database-inspired approach

Analyze, aggregate, and query

Textual and (semi-) structured
data

Research and prototype a
web-scale data analytics
infrastructure

Query Processor

Explore the power of Cloud computing for complex
information fusion

2Odej Kao – Stratosphere – Data Management on the Cloud

Current Research
Landscape

●

Large scale data management is area of vivid research
■

Google, Yahoo!, Microsoft, Facebook, IBM, UC Berkeley, UC Irvine, etc.

Pig,
Jaql,
Hive

Pig,
Jaql,
Hive

Higher-Level
Language

Parallel
Programming
Model

Execution
Engine

HadoopHadoop

Scope,
DryadLINQ

Scope,
DryadLINQ

AQL,
Pig,
Hive

AQL,
Pig,
Hive

SIMPLE/
Sopremo
SIMPLE/
Sopremo

PACTPACT

DryadDryad NepheleNephele

Map/Reduce

Hadoop Stack
(Yahoo!, Facebook)

Dryad Stack
(Microsoft)

Stratosphere Stack
(TU, HU, HPI)

Asterix Stack
(UCI, UCR, UCSD)

HyracksHyracks

AlgebricksAlgebricks

Odej Kao – Stratosphere – Data Management on the Cloud 3

Outline

●

Overview Stratosphere

●

Massive-parallel execution with Nephele

●

Topology detection and streaming

●

Conclusions

4Odej Kao – Stratosphere – Data Management on the Cloud

Stratosphere in a Nutshell

●

PACT Programming Model
■

Declarative definition of data
parallelism

■

Centered around second-order
functions

 Generalization of map/reduce

●

Nephele
■

Executes schedules compiled from
PACTs

■

Exploits scalability/flexibility of clouds
■

Fault tolerance mechanisms

■

Designed to run on top of IaaS
■

Heterogeneity through different VM
types

Nephele

PACT Compiler

Infrastructure‐as‐a‐Service

5Odej Kao – Stratosphere – Data Management on the Cloud

Result

Data
Storage

Nephele

Schedule

Parallel

Execution

Engine

Parallel Execution

Model

Architecture: Nephele Layer

●

Key Concepts
■

Massively parallel,
fault-tolerant engine

Nephele Layer

6Odej Kao – Stratosphere – Data Management on the Cloud

Result

Statistics

Data
Storage

Cost‐based

Parallelizer

PEPs

Nephele

Schedule

PEP

Parallel

Execution

Engine

Key/Value

Programming Model

Parallel Execution

Model

PEP

Annotation

Architecture: PACT Layer

●

Key Concepts
■

Massively parallel,
fault-tolerant engine

■

Declarative specification
through parallelization
contracts (PACTs)

Nephele Layer

PACT Layer

7Odej Kao – Stratosphere – Data Management on the Cloud

Result

Statistics

Data
Storage

Cost‐based

Parallelizer

PEPs

Nephele

Schedule

PEP

Parallel

Execution

Engine

Continuous

Optimization

Engine

Key/Value

Programming Model

Parallel Execution

Model

PEP

Annotation

Architecture: Continuous
Optimization

●

Key Concepts
■

Massively parallel,
fault-tolerant engine

■

Declarative specification through

 parallelization contracts (PACTs)
■

Adaptive execution

Nephele Layer

PACT Layer

8Odej Kao – Stratosphere – Data Management on the Cloud

Result

Statistics

Data
Storage

Cost‐based

Parallelizer

Robustness

Optimizer

PEPs

Nephele

Schedule

PEP

Parallel

Execution

Engine

Continuous

Optimization

Engine

Key/Value

Programming Model

Parallel Execution

Model

PEP

Annotation

Architecture: Robustness

●

Key Concepts
■

Massively parallel,
fault-tolerant engine

■

Declarative specification through

 parallelization contracts (PACTs)
■

Adaptive execution
■

Robust Optimization

Nephele Layer

PACT Layer

9Odej Kao – Stratosphere – Data Management on the Cloud

Result

Statistics

Data
Storage

Cost‐based

Parallelizer

Robustness

Optimizer

PEPs

Nephele

Schedule

PEP

SIMPLE

Program

Parallel

Execution

Engine

Sopremo

Continuous

Optimization

Engine

Semantically Rich

Programming Model

Key/Value

Programming Model

Parallel Execution

Model

PEP

Annotation

Architecture: SOPREMO
Layer

●

Key Concepts
■

Massively parallel,
fault-tolerant engine

■

Declarative specification through

 parallelization contracts (PACTs)
■

Adaptive execution
■

Robust Optimization
■

Semi-structured/text data
model

■

Uncertainty
■

Declarative data flow
programs with compute- and
data intensive operations

■

Information extraction
■

Data cleansing

Nephele Layer

PACT Layer

SOPREMO Layer

SIMPLE

Parser

10Odej Kao – Stratosphere – Data Management on the Cloud

What is a PACT?

●

Second-order function that defines properties on the input
and output data of its associated first-order function

●

Input Contract
■

Generates independently processable subsets of data

■

Generalization of map/reduce
■

Enforced by the system

●

Output Contract
■

Describes properties of the output of the first-order function

■

Use is optional but enables certain optimizations
■

Guaranteed by the user

11

First‐order function

 (user code)
Input

 Contract
Output

 Contract
Data Data

Odej Kao – Stratosphere – Data Management on the Cloud

Map and reduce as PACTs

●

Map and reduce are PACTs in our context

●

Map
■

All pairs are independently
processed

●

Reduce
■

Pairs with identical key are grouped

■

Groups are independently processed

Input set
Independent

subsets

Key Value

12Odej Kao – Stratosphere – Data Management on the Cloud

PACTs beyond Map and
Reduce

●

Cross
■

Cartesian product of multiple inputs is built

■

All combinations are processed independently

●

Match
■

Multiple inputs

■

All combinations of pairs with identical key
over all inputs are built and processed
independently

■

Contract resembles an equi-join on the key

●

CoGroup
■

Pairs with identical key are grouped for each
of multiple input

■

Groups of all inputs with identical key
are processed together

13Odej Kao – Stratosphere – Data Management on the Cloud

Outline

●

Cloud Computing for Data Management

●

Massive-parallel execution with Nephele

●

Topology detection and streaming

●

Conclusions

14Odej Kao – Stratosphere – Data Management on the Cloud

Research Question

15

“How to improve the efficiency of massively parallel data
processing on Infrastructure as a Service (IaaS) platforms”

●

Opportunities: Elasticity
■

Scale-up/scale-down to respond to changes in the workload

■

Exploit resource heterogeneity to improve cost efficiency

●

Challenges: Loss of control due to required virtualization
■

Shared infrastructure, loss of knowledge about I/O capacities

■

Network topology between machines is unknown

Odej Kao – Stratosphere – Data Management on the Cloud

Requirements

●

Shared resource management
■

Abandon assumption that execution engine “owns”

nodes

■

Instead nodes are temporarily “leased”
IaaS Cloud

Parallel
Execution
Engine

●

Job must express tasks‘

data dependencies
■

Which task‘s input is required as which task‘s output

■

Required to safely terminate virtual machines

●

Mapping between tasks and VM types
■

Which task shall run on which type of virtual machine?

■

Information could be provided by programmer

16Odej Kao – Stratosphere – Data Management on the Cloud

Research Prototype:
Nephele

Public Network (Internet)

Cl
ou

d
M
gm

t.
 In
te
rf
ac
e

Pe
rs
is
te
nt
 S
to
ra
ge

Private / Virtualized Network

IaaS Cloud

ClientClient

Master

Worker

Workload over time

Worker Worker

●

Standard master worker pattern
●

Workers can be allocated on demand

18Odej Kao – Stratosphere – Data Management on the Cloud

Nephele Job Description

●

Nephele job is represented as DAG
■

Vertices represent tasks

■

Edges denote communication channels

●

Mandatory information for each vertex
■

Task program, (Input/output data location)

●

Optional information for each vertex
■

Degree of parallelism

■

Degree of parallelism per node
■

Node type (#CPU cores, RAM…)

■

Channel types, …

Output

1

Task 1

Input 1

19Odej Kao – Stratosphere – Data Management on the Cloud

Internal Scheduling
Representation

Output

1

Task 1

Input 1

●

Explicit parallelization
■

Individual degree of parallelization for each task

●

Explicit assignment to VMs

●

Communication channels
■

Network channels

■

In-memory channels
■

File channels

20Odej Kao – Stratosphere – Data Management on the Cloud

Experimental Evaluation

Sort

6 VMs6 VMs 66

Sort

6 VMs6 VMs 2266 11

●

MR jobs on Hadoop ●

MR jobs on Nephele

21Odej Kao – Stratosphere – Data Management on the Cloud

CPU Bottlenecks

Challenges for Exploiting
Elasticity

●

Which degree of parallelization is suitable for which task?
■

Cloud philosophy: one core x 1000 hours = 1000 cores x one hour

■

Hard to anticipate for arbitrary user code, must be assessed online

Output 1

Task 1

Input 1

Task 1: Avg. CPU Util.:

Output 1: Avg. CPU Util.:

Input 1: Avg. CPU Util.:

I/O Bottlenecks

Output 1: Avg. CPU Util.:

Input 1: Avg. CPU Util.:

Task 1: Avg. CPU Util.:

22Odej Kao – Stratosphere – Data Management on the Cloud

Bottleneck Detection

●

Profiling component runs on every worker node

●

Profiling provides
■

pt(vi): % of time parallel instance i of vertex v used its given CPU time

 during last t seconds (seq. code, independence of par. instances)
■

st(ej): % of time parallel instance j of edge e was saturated during last t

seconds (capacity contr. channels)

●

Values of pt(vi) and st(ej) are propagated to master every t seconds

23Odej Kao – Stratosphere – Data Management on the Cloud

Bottleneck Detection
Algorithm

LRTS  ReverseTopologicalSort(G)

for all v in LRTS do
v.isCpuBottleneck  IsCPUBottleneck(v, G)

end for

if Ǝv ϵ

LRTS : v.isCPUBottleneck then
for all v in LRTS do

Ev = {(v,w) | w ϵ

VG � (v,w) ϵ

EG }
for all e ϵ

Ev do
e.isIOBottleneck  IsIOBottleneck(e, G)

end for
end for

end if

Criteria I/O bottleneck:
●

st(e) > β

(β

= 90%)
●

No successor edge of e
is I/O bottleneck

Criteria CPU bottleneck:
●

pt(v) > α

(α

= 90%)
●

No successor vertex of v
is CPU bottleneck

st(e1) = 99%

pt(v1) = 35%

pt(v2) = 99%

pt(v3) = 10% pt(v4) = 27%

st(e2) = 16% st(e3) = 9%

11 22

33

44

CPU
Bottleneck

CPU
Bottleneck

24Odej Kao – Stratosphere – Data Management on the Cloud

Evaluation (1/2)

●

Evaluation job
■

Conversion of article DB

■

40 GB of bitmap images to PDF

●

Properties of job
■

Different computational
complexities of tasks

■

Each parallel instance runs on
separate VM (with 1 CPU core)

■

Input data reside on external
storage

File Reader

OCR Task

PDF Creator
Inverted

Index Task

Inverted
Index WriterPDF Writer

●

Goal of evaluation
■

Find ideal degree of parallelization for each task

25Odej Kao – Stratosphere – Data Management on the Cloud

Evaluation (2/2)

CPU Bottleneck

I/O Bottleneck

Duration: 5:10 h
4 VMs

Duration: 5:10 h
4 VMs

Duration: 1:15 h
7 VMs

Duration: 1:15 h
7 VMs

Duration: 0:25 h
22 VMs

Duration: 0:25 h
22 VMs

Duration: 0:24 h
23 VMs

Duration: 0:24 h
23 VMs

26Odej Kao – Stratosphere – Data Management on the Cloud

Outline

●

Cloud Computing for Data Management

●

Massive-parallel execution with Nephele

●

Topology detection and adaptive compression

●

Conclusions

27Odej Kao – Stratosphere – Data Management on the Cloud

●

The network is a scarce resource
■

Used for communication among nodes

■

Used by distributed file system
■

Possibly used by other virtual machines

●

Network performance hard to predict
■

Available throughput may change over time

■

Can lead to I/O bottlenecks starvation

●

Idea: Handle varying I/O performance
 on application layer

■

Adaptive compression
■

Topology detection

Motivation

Pa
ra
lle
l D

at
a
Fl
ow

Pa
ra
lle
l D

at
a
Fl
ow

I/O Bottleneck

28Odej Kao – Stratosphere – Data Management on the Cloud

●

Selection of different compression algorithms
■

Each algorithm has different time/size ratio

●

Calibration of decision model during
data transfer
■

Try out different compression levels

■

Learn from previous compression decisions
■

Reward good decisions, penalize bad ones

Adaptive Online
Compression

ApplicationApplication I/O Layer of OSI/O Layer of OS

Adaptive Online CompressionAdaptive Online Compression

No comp.
Algo. X
Algo. Y
Algo. Z

No comp.
Algo. X
Algo. Y
Algo. Z

Decision ModelDecision Model





Uncompressed
Data

Uncompressed
Data

Compressed
Data

Compressed
Data

29Odej Kao – Stratosphere – Data Management on the Cloud

Decision ModelDecision Model

Feedback DataFeedback Data

Detecting network topology

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

Server n

Rack
Switch 1

Rack
Switch 2

Rack
Switch 3

Rack
Switch 4

Backbone Switch / IP Router

Server 2

VM 1 VM 2 VM m

30Odej Kao – Stratosphere – Data Management on the Cloud

Detecting network topology

Rack
Switch 1

Rack
Switch 2

Rack
Switch 3

Rack
Switch 4

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router

31Odej Kao – Stratosphere – Data Management on the Cloud

Detecting network topology

Rack
Switch 3

Rack
Switch 4

Rack
Switch 1

Rack
Switch 2

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router

> 1 GBit/s (no actual bits on the wire)

~ 1 GBit/s (regular Ethernet)

< 1 GBit/s

32Odej Kao – Stratosphere – Data Management on the Cloud

Detecting network topology

Rack
Switch 3

Rack
Switch 4

Rack
Switch 1

Rack
Switch 2

Server Server Server ServerServer ServerServer Server

Backbone Switch / IP Router●

Cloud costumer‘s perspective:
■

IP addresses to VMs only  Underlying network topology is not revealed

■

Data locality cannot be exploited inside application

●

Can we infer the physical network topology from the VMs?

33Odej Kao – Stratosphere – Data Management on the Cloud

●

Rely on assistance of internal network nodes
■

Use ICMP, traceroute-like tools

Topology Inference (TI) from
End Nodes

●

Do not rely on assistance of internal network nodes
■

Observe network behavior from end nodes only

■

Use observations to infer existence of internal network nodes

34Odej Kao – Stratosphere – Data Management on the Cloud

●

One sender node, two or more receiver nodes
■

Connected through unknown, tree-like network

■

Sender sends probe packets to receivers
■

Receivers observe link characteristics like throughput, delay, packet loss

TI based on End-to-End
Measurements

Sender

Receiver

1

Receiver

2

Switch 1

Switch 2

Switch 3 Switch 4

Unknown physical routing tree

Individual
loss rate:
10%

Individual
loss rate:
20%

Sender

Receiver

1

Receiver

2

Internal
node 1

Inferred logical routing tree

Correlation of
individual loss rates

35Odej Kao – Stratosphere – Data Management on the Cloud

●

Packet loss hard to observe due to high throughput links
●

Virtualization destroys packet correlation on shared link

Link Characteristic Packet
Loss

Unable to observe packet loss with unmodified

device drivers

Poor correlation of packet loss on

shared link

36Odej Kao – Stratosphere – Data Management on the Cloud

●

Poor delay
correlation for KVM
with unmodified
device drivers

●

Modest increase of
interarrival times
for both KVM and
XEN
(paravirtualization)

Link Characteristic Delay

37Odej Kao – Stratosphere – Data Management on the Cloud

Link Characteristic Delay
(RTT)

Statistically significant gap

between intra‐

and intra‐host

RTT for XEN paravirt.

Statistically significant gap

between intra‐

and intra‐host

RTT for KVM paravirt.

High variance of RTTs for KVM

full virt.

●

RTT can be used to detect co-located VMs with paravirt.

38Odej Kao – Stratosphere – Data Management on the Cloud

●

Binary trees fit measured data most closely
■

Highest degree of freedom

■

„Overfitted“

version of actual network topology

Inferred Tree is always
Binary

1 2 3 4 5 6 7 8

9 1

0

1

1

1

7

3

5

2

4 6

8

1

1

Wrong

root node

Wrong root

node

Non‐existent
inner nodes
Non‐existent
inner nodes

Physical routing tree Inferred logic routing tree

39Odej Kao – Stratosphere – Data Management on the Cloud

●

Remember: Data center networks have regular structure
●

Idea:
■

Determine depth of each leaf node

■

New root minimizes difference between smallest and highest depth

Re-Rooting the Inferred
Tree

1

2

3 4

7

5

6

8

1

1

2

3

5 5 5

6

7 7

Smallest

depth: 2

Highest

depth: 7

Minimizes depth

difference

1

3

2

4

7

5

6

8

1

1 Re‐root 11

40Odej Kao – Stratosphere – Data Management on the Cloud

Limiting Depth of Inferred
Tree

1

2 3 4

7

5

6

8

1

1

Tree depth: 6

●

After Re-rooting, depth of the inferred tree is reduced
■

Assumption: Tree depth greater than d is unlikely to occur in data center

●

Idea:
■

Until tree depth ≤

d, identify leaf node with highest depth

■

Merge parent and parent’s parent

41Odej Kao – Stratosphere – Data Management on the Cloud

Limiting Depth of Inferred
Tree

1

2 3 4

6

5 7 8

1

1

Tree depth: 5

●

After Re-rooting, depth of the inferred tree is reduced
■

Assumption: Tree depth greater than d is unlikely to occur in data center

●

Idea:
■

Until tree depth ≤

d, identify leaf node with highest depth

■

Merge parent and parent’s parent

42Odej Kao – Stratosphere – Data Management on the Cloud

Limiting Depth of Inferred
Tree

1

2 3 4

85 6 7

1

1

Tree depth: 4

●

After Re-rooting, depth of the inferred tree is reduced
■

Assumption: Tree depth greater than d is unlikely to occur in data center

●

Idea:
■

Until tree depth ≤

d, identify leaf node with highest depth

■

Merge parent and parent’s parent

43Odej Kao – Stratosphere – Data Management on the Cloud

Limiting Depth of Inferred
Tree

1 2 3 4 85 6 7

1

1

1 2 3 4 85 6 7

1

1

Physical routing tree Inferred logic routing tree

Robinson‐Foulds

 Distance: 1.5

●

After Re-rooting, depth of the inferred tree is reduced
■

Assumption: Tree depth greater than d is unlikely to occur in data center

●

Idea:
■

Until tree depth ≤

d, identify leaf node with highest depth

■

Merge parent and parent’s parent

44Odej Kao – Stratosphere – Data Management on the Cloud

Current Work: Streaming

●

Nephele and PACTs currently focus on batch-job
workloads
■

Usual goal: „minimize time-to-solution“

■

Translates to „maximize throughput“

●

What about streaming workloads?
■

Possible with Nephele, but (as of now)
not PACTs

■

May have different goals
♦

Meet pipeline latency and throughput requirements

♦

Minimize pipeline latency, don‘t care about throughput
♦

Max/Min other custom metrics

Odej Kao – Stratosphere – Data Management on the Cloud 45

Conclusion

●

Parallel data processing on clouds is promising research area
■

Elasticity/cost model provides new use cases

●

Future work
■

Streaming and profile comparisons

■

CloudNets –

move part of the computation into the networks

●

Plenty of opportunities for future work
■

Currently 20+ developers, Apache License

■

Check www.stratosphere.eu for downloads, tutorials

Odej Kao – Stratosphere – Data Management on the Cloud 46

Thank you

www.cit.tuwww.cit.tu‐‐berlin.deberlin.de

	Stratosphere – Data Management on the Cloud
	Stratosphere
	Current Research Landscape
	Outline
	Stratosphere in a Nutshell
	Architecture: Nephele Layer
	Architecture: PACT Layer
	Architecture: Continuous Optimization
	Architecture: Robustness
	Architecture: SOPREMO Layer
	What is a PACT?
	Map and reduce as PACTs
	PACTs beyond Map and Reduce
	Outline
	Research Question
	Requirements
	Research Prototype: Nephele
	Nephele Job Description
	Internal Scheduling Representation
	Experimental Evaluation
	Challenges for Exploiting Elasticity
	Bottleneck Detection
	Bottleneck Detection Algorithm
	Evaluation (1/2)
	Evaluation (2/2)
	Outline
	Motivation
	Adaptive Online Compression
	Detecting network topology
	Detecting network topology
	Detecting network topology
	Detecting network topology
	Topology Inference (TI) from End Nodes
	TI based on End-to-End Measurements
	Link Characteristic Packet Loss
	Link Characteristic Delay
	Link Characteristic Delay (RTT)
	Inferred Tree is always Binary
	Re-Rooting the Inferred Tree
	Limiting Depth of Inferred Tree
	Limiting Depth of Inferred Tree
	Limiting Depth of Inferred Tree
	Limiting Depth of Inferred Tree
	Current Work: Streaming
	Conclusion
	Thank you

