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The End of Dennard Scaling



Need More Capability?

Application Specific Systems
D.E. Shaw Research Anton

Massive Scaling - LANL/SNL Cray XE6

Exploit a New Phenomenon
Adiabatic Quantum Processor

D-Wave One



A bit of perspective …

Memo to IBM

The transistor:
Nothing to worry about …

R. Landauer



Looking Backwards

The memo was precisely right
about the first transistor…
but not the second transistor!

R. Landauer
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D-Wave One
Adiabatic Quantum Optimization Device



Adiabatic Quantum 
Optimization

Problem: find the ground state of

Use adiabatic interpolation from transverse field (Farhi et al., 2000)

Graph Embedding implemented on DW-1 via Chimera graph retains NP-hardness V. Choi (2010)
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USC LM D-Wave One 
128 Qubit (OK, 108) Chip 
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UNCLASSIFIED

Images courtesy D-Wave



Eight Qubit Unit Cell

10Images courtesy D-Wave



Eight Qubit Unit Cell

11Images courtesy D-Wave



Tiling of Unit Cells

12Images courtesy D-Wave



Scalable Design

Component counts

Unit cells Qubits Couplers DACS JJs

1 8 16 56 1500
4 32 72 232 6000

16 128 328 968 24000
64 512 1416 3976 96000

256 2048 5896 16136 384000

Josephson junctionsdigital to analog converters

Rainier
Vesuvius
end of 2012

13Data courtesy D-Wave



D-Wave One Processor Graph 
108 functional qubits in a “Chimera graph”

14Image courtesy D-Wave



Mapping Spin Glasses

Complex graphs can be embedded into simpler graphs using 
strong ferromagnetic couplings (Kaminsky and Lloyd, 2002)

The strength of the ferromagnetic couplings grows with the 
degree of the embedded graph (Choi 2008)

In principle, an N-complete graph can be embedded in the 
geometry implemented by Dwave using N2 vertices (Choi 2010) 



Estimated Median Time to 
99% Success Probability for 

Random 2D Spin Glasses
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Energy Scaling

Energy consumption of DW-1 is dominated by refrigeration

Effectively independent of system or the problem scale

17Figure courtesy D-Wave
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Does it behave as an 
Adiabatic Quantum Machine?



Random 2D Ising 
10 – 108 qubits, 5 us annealing



Random 2D Ising 
108 qubits, 5us – 20ms



Degenerate Ising 
Hamiltonian

17-fold degenerate ground space:

+/-1, -1

+/-1, -1

+/-1, -1

+1, -1

+/-1, -1

+1, -1

+1, -1

+1, -1

hj = -1, hj = 1, Jik = -1
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E1 2000 steps
E241 2000 steps
E1 500 steps
E241 500 steps
E1 250 steps
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Simulated Annealing
At Several Speeds

Temperature on a simple annealing 
evolution 

E1 (spins downs) is always more probable
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DW1 Experiments
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A Few Open Questions



When Might it Out-Perform 
Classical Alternatives?



How Should You Program It?

Enter your Hamiltonian
Use a GUI and a mouse
Sparse matrix in Matlab

D-Wave Black Box tool kit
Optimization abstraction
G. Rose, “This is not Fortran”

Will a general purpose 
language come along?

Will we have domain specific 
abstractions?



What About Error Correction?



Ferromagnetic chain 
experimental results

unencoded

encoded
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Application Research



Some NP-Complete Problems 
and their Application

Problem Application 

Traveling salesman Logistics, vehicle routing

Minimum Steiner tree Circuit layout, network design

Graph coloring Scheduling, register allocation

MAX-CLIQUE Social networks, bioinformatics

QUBO Machine learning

Integer Linear Programming Natural language processing

Sub-graph isomorphism Cheminformatics, drug discovery

Job shop scheduling Manufacturing

Motion planning Robotics

MAX-2SAT Artificial intelligence

The problem addressed by quantum annealing is NP-Complete
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Work in progress.
Initial tests on DWave’s processor.

Validation of 
Dynamical Control

Collaboration with Harvard



MW Amw Me Mp Mi nBP … 

0 0 1 0 1 0 … 

PCE   6.5 
!  

< 0 0 1 0 1 0 … > 

Rather than predicting numerical value for efficiency, predicts 
whether or not it will be over a certain threshold 

Solution is a binary vector marking each descriptor as a “good 
predictor” or “bad predictor”

Reduces descriptor space at expense of complexity of output 

Binary Classification
For Organic Photovoltaics

Collaboration with Harvard



Counterexample-Guided 
Abstraction-Refinement for 

Model Checking

Check 
Counterexample

Obtain 
Refinement Cue

Model CheckBuild New 
Abstract Model

M’M

No Bug

Pass

Fail

Bug
Real CESpurious CE

SATILP
Machine learning AQC



Others

Slides I couldn’t pinch …

Low Density Parity Check (LDPC) Codes

Software Verification and Validation
Machine Learning
Collaboration with Lockheed Martin

Natural Language Processing
Integer Linear Programming
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Summary



Summary

After little over a decade, adiabatic quantum 
computing is moving from theory to practice.

The D-Wave architecture raises a variety of 
research questions:

Understanding the physics of what it does
Developing programming abstractions
Finding applications it can uniquely solve

USC and Lockheed Martin are jointly investigating 
all of the above
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Questions?



Gaps of spin glasses

Karimi et al. 2010



Spin Glasses 
Median times vs. spins
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Spin Glasses 
90th percentile
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Coupled CJJ

R. Harris et. al.



Adiabatic Interpolation

Energies
(GHz) A(t) B(t)

Time / Total time

Temperature



Whence the Power of 
Adiabatic QC?

46

Many optimization problems can be thought of as exploring an 
“energy landscape” in which the globally optimal solution 
corresponds to the deepest trough in this landscape
A classical, thermal annealing process is confined to move only 
ON this landscape; consequently, it can get stuck in local 
minima
A quantum annealing process (implemented in the DW-1) can 
tunnel THROUGH the peaks in this landscape and thereby 
evade entrapment in local minima & find deeper minima more 
quickly



Classical Repetition Cost 
r
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