USC Viterbi School of Engineering

Adiabatic Quantum Computing

Bob Lucas

USC Viterbi School of Engineering Information Sciences Institute June 27, 2012

USC / ISI Colleagues

Daniel Lidar Federico Spedalieri Greg Ver Steeg Kristen Pudenz Sergio Boixo

Many others including:

Ben Reichardt Edmun Jonckheere John Damoulakis Lorenzo Campos Massoud Pedram Milad Marvian

Paolo Zanardi Stephan Haas Susumu Takahashi Tameem Albash Todd Brun Tony Levi Dan Davenport Greg Tallant Peter Stanfill

Need More Capability?

Massive Scaling - LANL/SNL Cray XE6

Application Specific Systems D.E. Shaw Research Anton

Exploit a New Phenomenon Adiabatic Quantum Processor D-Wave One

A bit of perspective ...

Memo to IBM

The transistor: Nothing to worry about ...

R. Landauer

Looking Backwards

The memo was precisely right about the first transistor... but not the second transistor!

R. Landauer

Information Sciences Institute

D-Wave One Adiabatic Quantum Optimization Device

Adiabatic Quantum Optimization

Problem: find the ground state of

$$H_{\text{Ising}} = \sum_{j} h_{j} \sigma_{j}^{z} + \sum_{(i,j)\in E} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

Shown by Barahona (1982) to be NP-hard in 2D, $J_{ii} = \pm$, $h_i \neq 0$.

Use adiabatic interpolation from transverse field (Farhi et al., 2000)

$$H(t) = A(t) \sum_{j} \sigma_{j}^{x} + B(t) H_{\text{Ising}}$$

$$t \in [0, t_{f}] \qquad \text{Program } \{h_{i}\}, \{J_{ij}\}$$

Graph Embedding implemented on DW-1 via Chimera graph retains NP-hardness V. Choi (2010)

UNCLASSIFIED USC LM D-Wave One 128 Qubit (OK, 108) Chip

USC Viterbi

School of Engineering

Eight Qubit Unit Cell

Eight Qubit Unit Cell

Tiling of Unit Cells

A 128-qubit chip composed of a 4 \times 4 array of eight-qubit unit cells.

Component counts

		digital to analog converters			Josephson junctions	
				\checkmark	\checkmark	
	Unit cells	Qubits	Couplers	DACS	JJs	
	1	8	16	56	1 500	
	4	32	72	232	6 000	
Rainier →	16	128	328	<mark>968</mark>	24 000	
Vesuvius —	64	512	1416	3 <mark>976</mark>	<u>960</u> 00	
	256	2048	5896	16 <mark>136</mark>	<mark>384 0</mark> 00	

Data courtesy D-Wave

USC Viterbi School of Engineering D-Wave One Processor Graph 108 functional qubits in a "Chimera graph"

Mapping Spin Glasses

Complex graphs can be embedded into simpler graphs using strong ferromagnetic couplings (Kaminsky and Lloyd, 2002)

The strength of the ferromagnetic couplings grows with the degree of the embedded graph (Choi 2008)

In principle, an N-complete graph can be embedded in the geometry implemented by Dwave using N² vertices (Choi 2010)

Estimated Median Time to 99% Success Probability for Random 2D Spin Glasses

Median estimated time (99%) in us 120 100 Estimated time (99%) in us 80 60 ¥ ¥ ¥ ×× 40 ¥ 20 0 20 40 60 100 80 120 0 Number of spins

Energy Scaling

Energy consumption of DW-1 is dominated by refrigeration

Effectively independent of system or the problem scale

Figure courtesy D-Wave

Does it behave as an Adiabatic Quantum Machine?

USC Viterbi School of Engineering 10 – 108 qubits, 5 us annealing Information Sciences Institute

Random 2D Ising 108 qubits, 5us – 20ms

USC Viterbi

School of Engineering

Degenerate Ising Hamiltonian

Simulated Annealing At Several Speeds

USC Viterbi

School of Engineering

DW1 Spectrum

QA vs. SA

DW1 Experiments

gap

E1 is still suppressed

Information Sciences Institute

A Few Open Questions

USC Viterbi School of Engineering When Might it Out-Perform Classical Alternatives?

Enter your Hamiltonian Use a GUI and a mouse Sparse matrix in Matlab

USC Viterbi

School of Engineering

D-Wave Black Box tool kit Optimization abstraction G. Rose, "This is not Fortran"

Will a general purpose language come along?

Will we have domain specific abstractions?

What About Error Correction?

USC Viterbi

School of Engineering

Ferromagnetic chain experimental results

Information Sciences Institute

Application Research

Some NP-Complete Problems and their Application

The problem addressed by quantum annealing is NP-Complete

Problem	Application		
Traveling salesman	Logistics, vehicle routing		
Minimum Steiner tree	Circuit layout, network design		
Graph coloring	Scheduling, register allocation		
MAX-CLIQUE	Social networks, bioinformatics		
QUBO	Machine learning		
Integer Linear Programming	Natural language processing		
Sub-graph isomorphism	Cheminformatics, drug discovery		
Job shop scheduling	Manufacturing		
Motion planning	Robotics		
MAX-2SAT	Artificial intelligence		

Validation of Dynamical Control

Error for good control: 4%
Error for bad control: 3%

USC Viterbi

School of Engineering

Work in progress. Initial tests on DWave's processor.

Collaboration with Harvard

Binary Classification For Organic Photovoltaics

USC Viterbi

School of Engineering

Dragon 6

Rather than predicting numerical value for efficiency, predicts whether or not it will be over a certain threshold

Solution is a binary vector marking each descriptor as a "good predictor" or "bad predictor"

Reduces descriptor space at expense of complexity of output

Collaboration with Harvard

Counterexample-Guided Abstraction-Refinement for Model Checking

Slides I couldn't pinch ...

Low Density Parity Check (LDPC) Codes

Software Verification and Validation Machine Learning Collaboration with Lockheed Martin

Natural Language Processing Integer Linear Programming USC Viterbi School of Engineering

Summary

After little over a decade, adiabatic quantum computing is moving from theory to practice.

The D-Wave architecture raises a variety of research questions:

Understanding the physics of what it does Developing programming abstractions Finding applications it can uniquely solve

USC and Lockheed Martin are jointly investigating all of the above

USC Viterbi School of Engineering

Questions?

Gaps of spin glasses

Karimi et al. 2010

Spin Glasses Median times vs. spins

USC Viterbi

School of Engineering

Estimated time (99%) in us Estimated time (99%) in us

Number of spins

Spin Glasses 90th percentile

R. Harris et. al.

Whence the Power of Adiabatic QC?

Many optimization problems can be thought of as exploring an "energy landscape" in which the globally optimal solution corresponds to the deepest trough in this landscape

A classical, thermal annealing process is confined to move only ON this landscape; consequently, it can get stuck in local minima

A quantum annealing process (implemented in the DW-1) can tunnel THROUGH the peaks in this landscape and thereby evade entrapment in local minima & find deeper minima more quickly

Quantum (H

USC Viterbi School of Engineering

Let $p_e = \text{expt. prob. of finding GS}$; know $p_e > 0$ for sufficiently large t_f Prob. of failing r consecutive times = $(1 - p_e)^r$ Prob. of succeeding at least once after r attempts = $1 - (1 - p_e)^r$

Let p_d = desired success probability Set $p_d = 1 - (1 - p_e)^r$ $r = \frac{\log(1 - p_d)}{\log(1 - p_e)}$