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Big Data ...Popular View.. Streaming..
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Genomics

Data Volume increases
to 10 PBin FY21

High Energy Physics
(Large Hadron Collider)

15 PB of data/year

Light Sources

Approximately 300 TB/
day

- Climate

Data expected to be
=== hundreds of 100 EB

Source: Bill Harrod, SC12
plenary presentation

Data Challenges in High Energy Physics:
Large Hadron Collider exemplar

X
e

ATLAS and CMS detectors “‘ J S
generate analog data at rates h“ =h &
equivalent to 1PB/second ‘h L

Output rate after data reduction is
1GB/second ~ 10PB/year
Storage of cumulative derived
data, simulated data, replicated
data is currently ~ 100PB, and is
rapidly increasing

Workflow: homogeneous
community of physicists access
read-only shared data using the
Worldwide LHC Computing Grid

Data Challenges in Large-Scale Simulations:
S3D Combustion code exemplar

* Goal: simulate turbulence-chemistry
interaction at conditions that are
representative of realistic systems

» High pressure

» Turbulence intensity

» Turbulent length scales

« Sufficient chemical fidelity to differentiate
effects of fuels

» Exascale simulation will require 3PB
of memory, and will generate 400PB
of raw data (1PB every 30 minutes)

» Workflow challenges include co-
design for simulation and in-situ
analyses

http://science.energy.gov/~/media/ascr/ascac/pdf/reports/2013/

ASCAC Data_Intensive_Computing report final.pdf
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Thinking about BIG DATA!
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“Data intensive” vs “Data Driven”

Data Intensive (Dl) Data Driven (DD)

» Perspective Driven . (Big) Data Analytics
o Processor, memory, o Top-down query
application, sforage® o Botftom up discovery

* An applicatfion can e (unpredictable TTR)
data intensive without o Predictive modeling
oeing I/O intensive + Usage model differences

DD is Not only about “What you Know”, It is ALSO
about “What else you may know”... and faster

® © Alok Choudhary 04



A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL SCIENCE:. “DATA DRIVEN DISCOVERY”
WORTH A THOUSAND SIMULATIONS?

© Alok Choudhary 7



Discovering Materials : Simulations 2 Analytics

Construction of FE Predictive Modeling Model Evaluation
prediction database
e Consists of compounds with known eConstruct data mining models to eTest model on unseen data
formation energy (FE) predict formation energy using «10-fold cross validation (data divided
eEmpiric periodic table information chemical formula and derivable into 10 segments, model built on 9
added (e.g. electro negativity, mass, empirical information segments and tested on remaining 1
atomic radii, # valence s, p, d, f segment; process repeated 10 times
electrons) with different test segment)

(a)

Large scale FE Validation

prediction

* Run combinatorial list
of compounds through
the FE model

e Structure prediction

e Quantum mechanical
modeling

e Thermodynamic
stability and heuristics
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list of ternary . . . discovered
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compounds structures
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Ranking — Approximation is good enough

for ranking

(closing the loop)

B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C.
Wolverton, “Combinatorial screening for new materials in unconstrained composition space with
machine learning,” Physical Review B, vol. 89, p. 094104, 2014. BM and AA are co-first authors.
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T indicates a model prediction
associated with a known stable

ternary compound that was
absent from DFT thermodynamic
database; the prediction

is thus confirmed, but no crystal
structure search was necessary.



Aot Accelerating Time to Discovery©

insertion of
new material

10 years for
insertion of
new material

BC: DW of
thousands of
DFT simulations

Experiment BD: Predictive
(synthesis) and Models for New
evaluation Materials

& Virtuous Cycle

BC: Validation
of Candidates Prioritization of

using Big top Candidates
Compute

® © Alok Choudhary ®10



Thus...True Promise - Accelerating Time to

Actionable Insights

Transactional
vs Historical
model?

Data
intensive vs
Data-driven?

eneration vs
consumption
models

System
design
drivers

® © Alok Choudhary
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CO2 levels hit new peak at key C' ) | U S

NOAA Satellite and Information Service > N‘““l’)“ic'c’"‘al"c
National Environmental Satslite, Data, and Information Service (NESDIS) 4.5, pepartmact of Comers §
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Understanding Climate Change Exemplar

A Case for Big Compute + Big Data Science

® © Alok Choudhary ®]12



Understanding Climate Change — DI - Physics-Based Approach
(Simulation = Data Generator)

General Circulation Models: Mathematical models
with physical equations based on fluid dynamics

Parameterization and non-linearity
of differential equations are sources for uncertainty!

Figure Courtesy: NCAR
CCSM CAM3_ _
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anomalies from 1890-1919 (K)

Understanding Climate Change —

globfllly avera}ged surfallce air temperature

1.2

——CObservations
—NATURAL-FORCINGS
——ALL-FORCINGS

1880 1900
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1920

1940 1960 1980

Figure Courtesy: ORNL
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| observed greenhouse gas
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Ensemble average with
pre-industrial greenhouse
gas concentrations
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Simulation + data-driven science ©

Physics based models are essential but Limited Disagreement between IPCC models

IR

- Relatively reliable predictions at global scale for
ancillary variables such as temperature

- Least reliable predictions for variables that are crucial
for impact assessment such as regional precipitation

..........

“The sad truth of climate science is that the

.

most crucial information is the least reliable” Regional hy;mgy exhibits large
(Nature, 2010) variations among major IPCC model
projections
Low uncertainty | High uncertainty | Out of scope
Temperature Hurricanes Fires
Pressure Extremes Malaria outbreaks
Large-scale wind  Precipitation Landslides
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ol

¢; -
Active Fires
fire pixels /1000 kn / day
[ eess—
0.1 100

10 10
March 2000
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Data Driven Science — Operational to Strategic

Instruments, sensors supercomputers

Transactional:
Data
Generation

Historical: Data
Processing,
transformation,
approximation

Discovery,
Insights,

Feedback

Data Mining,
analytics,
unsupervised
learning

Historical Learning Trigger/

data Models questions

Data
Management

Data
Reduction,

Query

Data
Visualization

Data Sharing




Transactional analytics to Data- Driven Science
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Edge weights: significant correlations
Nodes in the graph: grid points on the globe

Multivariate Networks

Multiphase Networks
© Alok Choudhary 17
Z. Chen, Y. Xie, Y. Cheng, K. Zhang, A. Agrawal, W.-k. Liao, N. Samatova, and A. Choudhary, “Forecast Oriented Classification
of Spatio-Temporal Extreme Events,” in Proceedings of the 23rd International Joint Conference on Artificial Intelligenceq
(IJCAI), 2013, pp. 2952-2954.



Relationship mining: Seasonal hurricane activity

High activity  Low activity
®* Contrast-based network mining for

discriminatory signatures

®* Novel dynamic graph clustering for
dense directed graphs

® Statistically robust methodology for
automatic inference of modulating
networks

Hurricane

®* |Improved forecast skill for seasonal = 5 -@?.W_Wmd/__«\__
hurricane activity Wit arvica  Bstanomaly )

gRH Anomaly

®* Discovered key factors and mechanisms

April-June

modulating NA hurricane variability AMO: Atiante Meriional oscilation

e i - - : Sencan et al. [JCAI (2011)
Discovered novel climate index with Pendse et al, SIAM SDM (2012)

much improved correlation with NA  Chen et al. Data Mining & Knowledge Discovery (2012)

hurricane variability: 0.69 vs 0.49 Clivern ¢ ¢l Bllaal IO (A011S)
Chen et al. [JCAI (2013)

° Semazzi et al. in review at journal (2013) °



Data Driven Science : Thinking about
Analytics?

Makes use of wealth of historical observational and simulation data

« Accelerate Time-to-Discovery and Actionable Insights

4

Requires Understanding Analyfics Algorithms and SW

® © Alok Choudhary o]



The Unknown

As we know,
There are known knowns.
There are things we know we know.

Y

N

\

e High Humidity results in outbreak of Meningitis
e Customers switch carriers when contract is over

* Nuclear Reaction happens under these conditions

* Did combustion occur at the expected parameter
values

e.g., Statistics, Query, Transformation, Viz




The Unknown
As we know,
There are known knowns.
There are things we know we know.

We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.

Top-Down Discovery - e Will this hurricane strike the Atlantic coast?

We know the question e What is the likelihood of this patient to
to ask develop cancer

* Will this customer buy a new smart phone?

Predictive Modeling...; e.g., SVM, Decision Trees

® O Alok Choudhary 2]



The Unknown

But there are also unknown unknowns,
The ones we don't know

We don't know.

* Wow! I found a new galaxy?

 Switch C fails when switch A fails followed by
switch B failing

* On Thursday people buy beer and diaper
together.

e The ratio K/P > X is an indicator of onset of
diabetes.

Bottom up Discovery -

We don’t know the
question to ask

Relationship Mining, Clustering etc.. - ARM

® O Alok Choudhary LY



The HW/SW Design Goals?

Big Compute

Time to Compute

Big Data

Time to Insight

Speed of Data Output

Speed of data Ingestion

(Typically) Model Driven

(Typically) Data-Driven

End Consumer — (Typically designer

of algorithms and SW (scientist)

End consumer != Designer of
Algorithms or scientist

Performance Metrics — FLOPS

Performance Metric — Many

(Mostly) Latency Intolerance

(Mostly) Latency Tolerant

Fault-tolerance important?

Fault-tolerance : central

Top-Down Design

© Alok Choudhary

Bottom-up Design

23



Cosmology EC+ BD

Data Synthetic Catalogs

Intensive
Compute N ‘Dark

»

ML LN Simulation  JUniverse’ I Observational
Campaigns  [|Sciente Campaigns

Multi-
Wavelength
Observations

Calibration | ~ i'Preéi‘Si_gn V7
Framework ] .Oracle’

nput, x

Courtesy : Dr. Salman Habib, ANL

® © Alok Choudhary 024



Big Compute + Big Data Analytics = A
Knowledge Discovery Engine?

«=(=Bjg Compute «=Big Data Analytics «+=BD+BC Knowledge Discovery Engine

® © Alok Choudhary ®25




Computation Characteristics

026

® © Alok Choudhary



Extreme-scale System: An instrument and a
discovery engine

Millions of cores
Each core is a data generator

v
—————————————

® © Alok Choudhary



A different way of thinking: Extreme Computing
+ Big data analytics => Accelerating Discovery

MATERIAL SCIENCE. “"TRANSFORMING LARGE-SCALE
OPTIMIZATION TO DATA-DRIVEN SCIENCE PROBLEM

© Alok Choudhary 28



Multi-Objective Optimization of Structure-Property
Relationships

Motivation: explore the Objective: obtain Approach: data
structure—property structures with and structural
relationships in desired optimized simulation in
polycrystals. property materials.

Microstructure
» Data —_—

Microstructure
m Computational
""""""""""""""""""""""""""""""""""""""""""" = data mining
v ; models
Property » Property —
Data
o I [



Structure Representation

Volume Fraction Representation

SPACE OF ALL
POSSIBLE ODFs

Mathematical representation of all

possible ODFs using FE degrees of
freedom.

Three constraints define
the space of first order
microstructural feature
(ODF):

* Normalization, gTA = 1
* Lower bound, A >=0

« Crystallographic
Symmetry, r’'=Gr

30



Structure-Property Optimization - Try
optimization for 10*3 dimensions

Microstructure
Representation

®

Traditional Method

/Features that
mathematically or
statistically describe
microstructures

J

=

® © Alok Choudhary

microstructure-property
pairs with most desired
and most undesired
objectives

o

| =

Database
Construction
/Randomly generated

>

v

Feature
Selection

1

Global
Optimization

Find the value of
microstructure that
leads 1o the extremal
properties

\

i

Select a small set of
“critical” microstructure
features

@\

Data Mining Method

3]



Optimum Solution

Accelerating Time to Insights

Experiment Result: Solution found/Performance vs. Number of Variables
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BC+BD
enables

4 D
Data Intensive Data Driven
Techniques in Computing at
Big Compute Scale
ey

" __~
HW/SW design feedback

® © Alok Choudhary
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Summary: Big Compute + Big Data : Not a
single dimensional challenge

® © Alok Choudhary ®34



Thank You!

Alok Choudhary
Dept. of Electrical Engineering and Computer Science
and Professor, Kellogg School of Management
Northwestern University
choudhar@eecs.northwestern.edu
312 515 2562
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Data Analytics/Mining applications:
Do they have different characteristics?
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Clear Implications on architecture, modes, memory hierarchy and other

components. Identify similarities and design for co-existence
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Analytics Apps Algorithms and Kernels...?

Top 3 Kernels

2

K-means Distance (68) Center (21) minDist (10) -
Fuzzy K-means Center (58) Distance (39) fuzzySum (1) -
BIRCH Distance (54) Variance (22) Redist (10) -
HOP Density (39) Search (30) Gather (23) -
Naive Bayesian probCal (49) Variance (38) dataRead (10) -
ScalParC Classify (37) giniCalc (36) Compare (24) -
Apriori Subset (58) dataRead (14) Increment (8) -
Eclat Intersect (39) addClass (23) invertC (10) -
SVMIight quotMatrix (57) quadGrad (38) quotUpdate (2) -

® © Alok Choudhary



Data Analytics — Broad Impact => Accelerating
Discoveries

Illustrative Applications Feature, data Data analysis kernels

reduction, or
analytics task

Chemistry, Climate, Combustion, Clustering k-means, fuzzy k-means, BIRCH, MAFIA,

Cosmology, Fusion, Materials DBSCAN, HOP, SNN, Dynamic Time Warping,

science, Plasma Random Walk

Biology, Climate, Combustion, Statistics Extrema, mean, quantiles, standard deviation,

Cosmology, Plasma, Renewable copulas, value-based extraction, sampling

energy

Biology, Climate, Fusion, Plasma Feature selection Data slicing, LVF, SFG, SBG, ABB, RELIEF

Chemistry, Materials science, Data transformations Fourier transform, wavelet transform, PCA/

Plasma, Climate SVD/EOF analysis, multidimensional scaling,
differentiation, integration

Combustion, Earth science Topology Morse-Smale complexes, Reeb graphs, level set
decomposition

Earth science Geometry Fractal dimension, curvature, torsion

Biology, Climate, Cosmology, Classification ScalParC, decision trees, Naive Bayes,

Fusion SVMlight, RIPPER

Chemistry, Climate, Combustion, Data compression PPM, LZW, JPEG, wavelet compression, PCA,

Cosmology, Fusion, Plasma Fixed-point representation

Climate Anomaly detection Entropy, LOF, GBAD

Climateg Basthcscisngeary Similarity / distance Cosine similarity, correlation (TAPER), mutualy

information, Student's t-test, Eulerian distance,



Right Computing infrastructure? What
characteristics do typical analytics functions have?

Benchmark of Applications
Parameter! SPECINT SPECFP MediaBench TPC-H MinsBsneh
Data References 0.81 0.55 0.56 0.48 1.10
Bus Accesses 0.030 0.034 0.002 0.010 0,937
Instruction Decodes 117 1.02 1.28 1.08 0.738
Resource Related Stalls 0.66 1.04 0.14 0.69 043
CPI 143 1.66 1.16 1.36 1.54
ALV Instructions 0.25 0.29 0.27 0.30 0.31
L1 Misses 0.023 0.008 0.010 0.029 0.91%
L2 Misses 0.003 0.003 0.0004 0.002 0.006
Branches 0.13 0.03 0.16 0.11 b4
Branch Mispredictions 0.009 0.0008 0.016 0.0006 0.5

TThe numbers shown here for the parameters are values per instruction

© Alok Choudhary 40



