
High Performance Computing High Performance Computing
Today and Benchmarking the Today and Benchmarking the

FutureFuture

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory

Current The TOP 10 SystemsCurrent The TOP 10 Systems

500 Meteorological Cray XC30 Germany 7280 .134 91

Replacement RateReplacement Rate

Performance Development of HPC over Performance Development of HPC over
the Last 22 Years from the Top500the Last 22 Years from the Top500

59.7 GFlop/s59.7 GFlop/s

400 MFlop/s400 MFlop/s

1.17 TFlop/s1.17 TFlop/s

33.9 PFlop/s33.9 PFlop/s

134 TFlop/s134 TFlop/s

274 PFlop/s274 PFlop/s

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

My Laptop (140 Gflop/s)

My iPad Air (4 Gflop/s)

Top500 FactoidsTop500 Factoids
• There are 37 systems > Pflop/s (up 6 from November).
• About 90% of all the systems on the Top500 list are

integrated by U.S. vendors, including 65 of the 76
Chinese supercomputers.

• HP has 182 systems on this list, or more than 36%,
followed by IBM with 176, or 35%. Cray has 50 or 10%,
SGI at 19 systems, and Dell at 8 systems.

• Intel processors largest share, 87% followed by AMD, 6%.
• For the first time, < 50% of Top500 are in the U.S. --

just 233 of the systems are U.S.-based, China #2 w/76.
• IBM’s BlueGene/Q is still the most popular system in the

TOP10 with four entries.
• Infiniband found in 221 systems, GigE in 202,

10-GigE in 75.
5

AcceleratorsAccelerators

Performance Share of AcceleratorsPerformance Share of Accelerators

Power EfficiencyPower Efficiency

Power EfficiencyPower Efficiency

BlueGene/Q

Cell

Mic

AMD
FirePro

Tsubame KFC
NVIDIA K20x

Projected Performance DevelopmentProjected Performance Development

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

http://tiny.cc/hpcg

LINPACK Benchmark (HPL) has a
Number of Problems
• HPL performance of computer systems are no longer so

strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

• Designing a system for good HPL performance can
actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.

11

http://tiny.cc/hpcg

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
• “Understandable” to the outside world

• “If your computer doesn’t perform well on the LINPACK
Benchmark, you will probably be disappointed with the
performance of your application on the computer.”

12

http://tiny.cc/hpcg

HPL - Bad Things
• LINPACK Benchmark is 37 years old

• TOP500 (HPL) is 21.5 years old

• Floating point-intensive performs O(n3) floating point
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)

• Encourages poor choices in architectural features
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

13

http://tiny.cc/hpcg

Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for

HPC system designers.
• Skews system design.

• Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements

14

http://tiny.cc/hpcg

Goals for New Benchmark
• Augment the TOP500 listing with a benchmark that correlates with important

scientific and technical apps not well represented by HPL

• Encourage vendors to focus on architecture features needed for high
performance on those important scientific and technical apps.
• Stress a balance of floating point and communication bandwidth and latency
• Reward investment in high performance collective ops
• Reward investment in high performance point-to-point messages of various sizes
• Reward investment in local memory system performance
• Reward investment in parallel runtimes that facilitate intra-node parallelism

• Provide an outreach/communication tool
• Easy to understand
• Easy to optimize
• Easy to implement, run, and check results

• Provide a historical database of performance information
• The new benchmark should have longevity

http://tiny.cc/hpcg 15

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:
• Dense and sparse computations.
• Dense and sparse collective.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral
properties of PCG).

http://tiny.cc/hpcg 16

Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
• Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

• 27 nonzeros/row interior.
• 7 – 18 on boundary.
• Symmetric positive definite.

(nx  ny  nz)
(npx  npy  npz)

(nx *npx) (ny *npy) (nz *npz)

http://tiny.cc/hpcg

PCG ALGORITHM
p0 := x0, r0 := b-Ap0
Loop i = 1, 2, …

o zi := M-1ri-1
o if i = 1
 pi := zi
 i := dot_product(ri-1, z)

o else
 i := dot_product(ri-1, z)
 i := i/i-1
 pi := i*pi-1+zi

o end if
o i := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o xi+1 := xi + i*pi
o ri := ri-1 – i*A*pi
o if ||ri||2 < tolerance then Stop
end Loop

http://tiny.cc/hpcg 18

Preconditioner
• Hybrid geometric/algebraic multigrid:

• Grid operators generated synthetically:
• Coarsen by 2 in each x, y, z dimension (total of 8

reduction each level).
• Use same GenerateProblem() function for all levels.

• Grid transfer operators:
• Simple injection. Crude but…
• Requires no new functions, no repeat use of other

functions.
• Cheap.

• Smoother:
• Symmetric Gauss-Seidel [ComputeSymGS()].
• Except, perform halo exchange prior to sweeps.
• Number of pre/post sweeps is tuning parameter.

• Bottom solve:
• Right now just a single call to ComputeSymGS().
• If no coarse grids, has identical behavior as HPCG 1.X.

19

http://tiny.cc/hpcg 19

• Symmetric Gauss-Seidel preconditioner
• In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA\y;
x1 = y - LA*x + DA*x; % Subtract off extra

diagonal contribution
x = UA\x1;

HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

• The historical importance and community outreach value
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
• Or maybe top 50 (have 15 systems at the moment).

20

http://tiny.cc/hpcg 20

HPL vs. HPCG: Bookends
• Some see HPL and HPCG as “bookends” of a spectrum.

• Applications teams know where their codes lie on the spectrum.
• Can gauge performance on a system using both HPL and HPCG

numbers.

• Problem of HPL execution time still an issue:
• Need a lower cost option. End-to-end HPL runs are too expensive.
• Work in progress.

http://tiny.cc/hpcg 21

HPLHPL
HPCGHPCG
Top15Top15

* scaled to reflect the same * scaled to reflect the same
number of coresnumber of cores

unoptimized implementation# unoptimized implementation

23

0�

5000000�

10000000�

15000000�

20000000�

25000000�

30000000�

35000000�

0� 50� 100� 150� 200� 250� 300� 350� 400� 450� 500�

Fl
op

/s
�

Rank�

Top500�

24

10000�

100000�

1000000�

10000000�

100000000�

1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20�

Fl
op

/s
�

Rank�

Comparison�HPL�&�HPCG�
Peak,�HPL,�HPCG�

Rpeak�

HPL�

25

10000�

100000�

1000000�

10000000�

100000000�

1� 2� 3� 4� 5� 6� 7� 8� 9� 10� 11� 12� 13� 14� 15� 16� 17� 18� 19� 20�

Fl
op

/s
�

Rank�

Comparison�HPL�&�HPCG�
Peak,�HPL,�HPCG�

Rpeak�

HPL�

HPCG�

Top 10 Challenges to ExascaleTop 10 Challenges to Exascale
In a recent report U.S. Department of
Energy identified ten research
challenges (Google “Top 10 Challenges to ExascaleTop 10 Challenges to Exascale”)

7/8/2014
26

Top 10 Challenges to ExascaleTop 10 Challenges to Exascale
• Energy efficiency:

 Creating more energy efficient circuit,
power, and cooling technologies.

• Interconnect technology:
 Increasing the performance and energy

efficiency of data movement.

• Memory Technology:
 Integrating advanced memory

technologies to improve both capacity
and bandwidth.

• Scalable System Software:
 Developing scalable system software that

is power and resilience aware.

• Programming systems:
 Inventing new programming

environments that express massive
parallelism, data locality, and resilience

• Data management:
• Creating data management software that can

handle the volume, velocity and diversity of
data that is anticipated.

• Exascale Algorithms:
• Reformulating science problems and

refactoring their solution algorithms for
exascale systems.

• Algorithms for discovery,
design, and decision:

• Facilitating mathematical optimization and
uncertainty quantification for exascale
discovery, design, and decision making.

• Resilience and correctness:
• Ensuring correct scientific computation in

face of faults, reproducibility, and algorithm
verification challenges.

• Scientific productivity:
• Increasing the productivity of computational

scientists with new software engineering
tools and environments.

Applied Math @ Applied Math @
ExascaleExascale

Google “doe applied math exascale”

29

Major Changes to Software & Major Changes to Software &
AlgorithmsAlgorithms
• Must rethink the design of our

models, math, algorithms and
software
 Another disruptive technology

• Similar to what happened with cluster
computing and message passing

 Rethink and rewrite the applications,
algorithms, and software

 Data movement is expense
 Flop/s are cheap, so are provisioned in

excess

