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Top500 FactoidsTop500 Factoids
• There are 37 systems > Pflop/s (up 6 from November).
• About 90% of all the systems on the Top500 list are 

integrated by U.S. vendors, including 65 of the 76 
Chinese supercomputers.

• HP has 182 systems on this list, or more than 36%, 
followed by IBM with 176, or 35%. Cray has 50 or 10%, 
SGI at 19 systems, and Dell at 8 systems.

• Intel processors largest share, 87% followed by AMD, 6%.
• For the first time, < 50% of Top500 are in the U.S. --

just 233 of the systems are U.S.-based, China #2 w/76.
• IBM’s BlueGene/Q is still the most popular system in the 

TOP10 with four entries.
• Infiniband found in 221 systems, GigE in 202,           

10-GigE in 75.
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http://tiny.cc/hpcg

LINPACK Benchmark (HPL) has a 
Number of Problems
• HPL performance of computer systems are no longer so 

strongly correlated to real application performance, 
especially for the broad set of HPC applications governed 
by partial differential equations.

• Designing a system for good HPL performance can 
actually lead to design choices that are wrong for the 
real application mix, or add unnecessary components or 
complexity to the system.
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http://tiny.cc/hpcg

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
• “Understandable” to the outside world

• “If your computer doesn’t perform well on the LINPACK 
Benchmark, you will probably be disappointed with the 
performance of your application on the computer.”
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http://tiny.cc/hpcg

HPL - Bad Things 
• LINPACK Benchmark is 37 years old

• TOP500 (HPL)  is 21.5 years old

• Floating point-intensive performs O(n3) floating point 
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)

• Encourages poor choices in architectural features 
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource
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http://tiny.cc/hpcg

Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for 

HPC system designers.
• Skews system design.

• Floating point benchmarks are not quite as valuable to 
some as data-intensive system measurements
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http://tiny.cc/hpcg

Goals for New Benchmark
• Augment the TOP500 listing with a benchmark that correlates with important 

scientific and technical apps not well represented by HPL

• Encourage vendors to focus on architecture features needed for high 
performance on those important scientific and technical apps.
• Stress a balance of floating point and communication bandwidth and latency
• Reward investment in high performance collective ops
• Reward investment in high performance point-to-point messages of various sizes
• Reward investment in local memory system performance
• Reward investment in parallel runtimes that facilitate intra-node parallelism

• Provide an outreach/communication tool
• Easy to understand
• Easy to optimize
• Easy to implement, run, and check results

• Provide a historical database of performance information
• The new benchmark should have longevity

http://tiny.cc/hpcg 15



Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential 

computational and communication patterns that are 
prevalent in a variety of methods for discretization and 
numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collective.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral 
properties of PCG).

http://tiny.cc/hpcg 16



Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
• Local domain:
• Process layout:
• Global domain:
• Sparse matrix: 

• 27 nonzeros/row interior. 
• 7 – 18 on boundary.
• Symmetric positive definite.

(nx  ny  nz)
(npx  npy  npz)

(nx *npx ) (ny *npy) (nz *npz)

http://tiny.cc/hpcg



PCG ALGORITHM
p0 := x0, r0 := b-Ap0
Loop i = 1, 2, …

o zi := M-1ri-1
o if i = 1
 pi := zi
 i := dot_product(ri-1, z)

o else
 i := dot_product(ri-1, z)
 i := i/i-1
 pi := i*pi-1+zi

o end if
o i := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o xi+1 := xi + i*pi
o ri := ri-1 – i*A*pi
o if ||ri||2 < tolerance then Stop
end Loop

http://tiny.cc/hpcg 18



Preconditioner
• Hybrid geometric/algebraic multigrid:

• Grid operators generated synthetically:
• Coarsen by 2 in each x, y, z dimension (total of 8 

reduction each level).
• Use same GenerateProblem() function for all levels.

• Grid transfer operators:
• Simple injection.  Crude but…
• Requires no new functions, no repeat use of other 

functions.
• Cheap.

• Smoother:
• Symmetric Gauss-Seidel [ComputeSymGS()].
• Except, perform halo exchange prior to sweeps.
• Number of pre/post sweeps is tuning parameter.

• Bottom solve:
• Right now just a single call to ComputeSymGS().
• If no coarse grids, has identical behavior as HPCG 1.X.

19
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• Symmetric Gauss-Seidel preconditioner 
• In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA\y;
x1 = y - LA*x + DA*x; % Subtract off extra 

diagonal contribution
x = UA\x1;



HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

• The historical importance and community outreach value 
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
• Or maybe top 50 (have 15 systems at the moment).

20
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HPL vs. HPCG: Bookends
• Some see HPL and HPCG as “bookends” of a spectrum.

• Applications teams know where their codes lie on the spectrum.
• Can gauge performance on a system using both HPL and HPCG 

numbers.

• Problem of HPL execution time still an issue:
• Need a lower cost option.  End-to-end HPL runs are too expensive.
• Work in progress.

http://tiny.cc/hpcg 21



HPLHPL
HPCGHPCG
Top15Top15

* scaled to reflect the same * scaled to reflect the same 
number of coresnumber of cores

# unoptimized implementation# unoptimized implementation
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Top 10 Challenges to ExascaleTop 10 Challenges to Exascale
In a recent report U.S. Department of 
Energy identified ten research 
challenges (Google “Top 10 Challenges to ExascaleTop 10 Challenges to Exascale”)

7/8/2014
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Top 10 Challenges to ExascaleTop 10 Challenges to Exascale
• Energy efficiency: 

 Creating more energy efficient circuit, 
power, and cooling technologies.

• Interconnect technology: 
 Increasing the performance and energy 

efficiency of data movement.

• Memory Technology: 
 Integrating advanced memory 

technologies to improve both capacity 
and bandwidth.

• Scalable System Software: 
 Developing scalable system software that 

is power and resilience aware.

• Programming systems: 
 Inventing new programming 

environments that express massive 
parallelism, data locality, and resilience

• Data management: 
• Creating data management software that can 

handle the volume, velocity and diversity of 
data that is anticipated. 

• Exascale Algorithms: 
• Reformulating science problems and 

refactoring their solution algorithms for 
exascale systems.

• Algorithms for discovery, 
design, and decision: 

• Facilitating mathematical optimization and 
uncertainty quantification for exascale 
discovery, design, and decision making.

• Resilience and correctness: 
• Ensuring correct scientific computation in 

face of faults, reproducibility, and algorithm 
verification challenges.

• Scientific productivity: 
• Increasing the productivity of computational 

scientists with new software engineering 
tools and environments.



Applied Math @ Applied Math @ 
ExascaleExascale

Google “doe applied math exascale”
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Major Changes to Software & Major Changes to Software & 
AlgorithmsAlgorithms
• Must rethink the design of our 

models, math, algorithms and 
software
 Another disruptive technology

• Similar to what happened with cluster 
computing and message passing

 Rethink and rewrite the applications, 
algorithms, and software

 Data movement is expense
 Flop/s are cheap, so are provisioned in 

excess 


