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Overview

e Look at scalability limits for grid-based PDE solvers.

e Outward looking:

— Internode vs. Intranode

 Current situation is not encouraging:

— End of Moore’s Law = End of running faster ®

e Finer granularity: n/P = 0 is key.




A PDE Example: Incompressible Navier-Stokes Egns.
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e Key algorithmic / architectural issues:

— Unsteady evolution implies many timesteps, significant reuse of preconditioners,
data partitioning, etc.

— Divu=0implies long-range global coupling at each timestep, multiple time-scales
- iterative solvers; communication intensive

— Small dissipation = large number of scales = large number of gridpoints for high
Reynolds number Re




Examples: Highly Unstructured Graphs
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Fig. 3 Recent SE flow simulations: (a) velocity distribution during the intake stroke in an SE-ALE simulation for the bench-
mark cylinder configuration of [64], (courtesy M. Schmitt, ETHZ); (b) model geometry of Booten et al. for a ribbed
turbine-blade cooling passage [29]; (c) snapshot of velocity magnitude in passage midplane; (d) close up of Lagrangian
particles in rounded turn of Booten geometry.
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Fig. 5 (a) SE quasi-periodic scattering solutions for oblique incidence in double-layer media with square and sawtooth grooves.
SE transparent boundary operator is applied on the top and bottom boundaries; (b) SEDG Schrédinger solution in layered
cylinders; (c) SEDG lattice Boltzmann (LB) method: vortices contour for flows past a hemisphere with Re = 5000 and
Ma = 0.01; (d) SEDG-LB turbulent model for channel flows; and (e¢) SEDG thermal LB model: temperature profiles
at different angles for natural convection flows in an annulus, validated with Nek5000 results.



Influence of Scaling on Discretization

Large problem sizes enabled by peta- and exascale computers allow
propagation of small features (size ;) over distancesL>> . |If
speed ~ 1, then tg,, ~ L/, >> 1.

— Dispersion errors accumulate linearly with time:

error ~ | correct speed — numerical speed| *t (for each wavenumber)
> error, 4., ~(L/,)* | numerical dispersion error |

— For fixed final error ¢, require numerical dispersion error ~ (,/L)g, << 1.

High-order methods can efficiently deliver small dispersion errors.
(Kreiss & Oliger 72, Gottlieb et al. 2007)




Spectral Element Method

(Patera 84, Maday & Patera 89)

— Variational method, similar to FEM, using GL quadrature.
— Domain partitioned into E high-order hexahedral elements

— Trial and test functions represented as N th-order tensor-
product polynomials within each element. (N ~ 4 -- 15, typ.)

 n~ EN3gridpointsin 3D

e Fast tensor-product-based operator evaluation: 0O(n) storage, o(nN) work

— Converges exponentially fast with N for smooth solutions.
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2D basis function, N=10 y‘ = F)' E=3, N=4




Spectral Element Convergence:

Exponential with N

Exact Navier-Stokes Solution (Kovazsnay ‘48)

g 4 orders-of-magnitude
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data-coupling. v \

v, = 1 — e*cos2uy
_ vy = iem sin 27y
q For a given error, 2m 2
. . R R
q Reduced number of gridpoints A = 76 - \l Te + 4m?

q Reduced memory footprint.
g Reduced data movement.




Impact of Order On Costs

e For SEM, memory scales as number of gridpoints, n.
» Work scales as nN, but is in form of (fast) matrix-matrix products.
e Time scales as n

Time-Domain Maxwell's SEDG Simulation Misun Min, ANL
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10' 10°
N=5
+ N=6
N=7
10° N=8
+ N=10
@ N=12
E + N=14 # .
102 « N=16 ./-'-"'/' g N=5 |
2 & L N=6
S © N=7 |
Nes
o 4 " N=10
‘ N=12|
+ N=14
* N=16
10° 107" : ' : '
10° 10° 10° 10° 10’ 0 2 4 6 8 10
Degrees of freedom Degrees of freedom x10°

Periodic Box; 32 nodes, each with a 2.4 GHz Pentium Xeon




Strong Scaling: 1 Million MPI Ranks

217 Pin Problem, N=9, E=3e6: Strong' Scalinlg to 1 II\/IiIIion‘Ranks'

10—

— 2 billion points

Reactor Assembly
n=2.0 billion
w / S. Parker, ALCF

— BGQ —524288 cores

e 1 or 2 ranks per core

— 60% parallel efficiency at
1 million processes

4000 pts/core
2000
pts/process

— 2000 points/rank

Time per step

1 process/core —+—

2 process/core —#—

— A mixture of CG / multigrid
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16384 32768 65536 131072 262144 524288

Number of Cores
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Nek/BGP Communication Cost Distribution vs Rank

e Billion-point 217-pin bundle simulation on P=65536
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B Neighbor vs. all_reduce: 50a vs 40 (4o, not 16 X 4a)




We Are Not Running Faster

DB: pab2a. nek5000
* Panda Benchmark — Nek5000 Cycle: 200

Pseudocolor 60 :

— E=190,000 elements =
_ N=7 .:005629
— n ~EN3=62 million ' "

— P~n/3000~ 16384 MPIranks M. |

Max: 0.07505
Min: 00002076

20

e Very long time integrations
— 1 month of wall clock time

* n/P~ 3000




How Can a User Control Runtime?

 There is one ubiquitous knob: granularity
—ie., n/P
— or, for a given problem size (n), vary P

— Usually can choose P sufficiently small to amortize
communication overhead and get good parallel efficiency

— What are reasonable n/P values as we move to exascale ?




How Can a User Control Runtime?
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Example

M. Sprague, NREL
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Generally, one can reduce P to increase n/P

B Conversely, for a given P, what value of n will be required for good

efficiency?




Improving Scalability

e Q: Will this scaling continue as we move to exascale?
e Q:Isthis the best we can do?

e What, exactly, is better, or even good?

— Good node performance
— Strong scaling to 10° or 10° processors.

 For most PDE solvers (and many other applications),
strong scaling is ultimately limited by communication
costs that do not go to zero as n/P =0:

t~c,n/P+c,




How Exascale Differs from Cluster Computing

e Single jobs on communal HPC systems rarely use all
compute resources:

— Effectively, an infinite sea of cores.

There is an incentive (time to solution) to spread the job as
thin as possible, i.e., a premium is placed on fine-grained /
strong-scale parallelism.

—> As little work per node as possible.

e |f we wish to run faster, we must optimize in this limit
- Need strategies to reduce internode latency.

Result will be a broader array of applications and more effective
use of exascale resources.




Multicore Does Not Imply Fine-Grained Parallelism

e Consider an operation with balanced communication / computation.
e Assume we can reduce the time spent on work through multicore.

Time

Parallel Tasks




Multicore Does Not Imply Fine-Grained Parallelism

* Internode latency is not reduced by adding more cores.
e Simulation becomes communication dominated.

Time

Parallel Tasks




Multicore Does Not Imply Fine-Grained Parallelism

 To restore computation / communication balance, we must
double the work per core”.

- Net granularity per core is unchanged.

Time

Parallel Tasks

“We must also now increase bandwidth/node.




Impact of Order on Costs

e With the assumption that cost is governed by number of
gridpoints and weakly on polynomial approximation order,
we study the scalability question in the context of familiar
finite difference stencils, applied to the 3D Poisson
problem.




Model Problem: Poissonwith finite differences

e We will consider complexity estimates for
3D Poisson with several iterative solvers.

* n/P points on each processor

processor p data from neighbor
allows stencil update




Metric for Scalability

e P-processor solution time for n points:

- T(P;n) = TA(P,n) + TC(P,n), or nonoverlapping comm.
— T(P,n) = max (TA(P,n), TC(P,n)) overlapping comm.

* As a metric for scalable, we seek conditions where T, > T,
i.e., communication is subdominant, with

— T,(P,n) = T(1,n) /P the parallel work

— Tc(P,n) the total communication cost

Assume linear message cost: t(m)= (a+pm)*t,
* m =number of 64-bit words
* t, =representative (observable) time for c=a*b
* « =nondimensional latency (o =a*/t,)

e B =nondimensional inverse-bandwidth (f .=p*/t,)




Linear Communication Model
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Linear communication model :
t.(m) = o*+B*m, m: 64-bit words
Nondimensionalize by t, [c = a*b]:
(M= (a+pm)t,
a=a/t,, B=p"/t,
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] Linear communication model :

t.(m) = o*+B*m, m: 64-bit words

: Nondimensionalize by t, [c = a*b]:

(M= (a+pm)t,
a=a/t,, B=p"/t,




25 Years of Nondimensional Machine Parameters

YEAR t (us) «F B* o m,  MACHINE
1986 50.00 5960. 64(119.2 1.3 93 | Intel iPSC-1 (286)
1987 .333 5960. 64 (18060 192 93 | Intel iPSC-1/VX
1988 10.00 938. 2.8 | 93.8 .28 335 | Intel iPSC-2 (386)
1988 250 938. 2.8 | 3752 11 335] Intel iPSC-2/VX
1990 100 80. 2.8 | 800 28 29| Intel iPSC-i860
1991 100 60. .80 | 600 8 75| Intel Delta

1992 .066 50. .15 758 2.3 330/ Intel Paragon
1995 .020 60. .27 | 3000 15 200| IBM SP2 (BU96)
1996 .016 30. .02 | 1800 1.25 1500 ASCIRed 333
1998 006 14. .06 | 2300 10 230| SGI Origin 2000
1999 .005 20. .04 | 4000 8 375| CrayT3E/450
2005 .002 4. .026| 2000 13 154 BGL/ANL

2008 .0017 4. .021| 2353 12.6 185| BGP/ANL

2011 .0007 2.5 .002| 3570 3 1190| Cray Xe6 (KTH) [m2=24]
2012 .0010 4. .005| 5000 5 1000/ BGQ/ANL

* m,:= o/ ~ message size = twice cost of single-word message

e t, based on matrix-matrix products of order 10—13




Complexity Models for Iterative Solvers

: . . _ _ (see, e.g., Fox et al., ‘88)
— Point Jacobi iteration (7-point stencil, 3D):

— Work: T,,~ 14n/Pt,

— Communication: T~ (6+ (n/P)?? (U/m,) ) at,

— Conjugate gradient iteration (7-point stencil):  (alt: Chebyshev iteration)
— Work: TaCG —~ 27 n/P ta

— Communication: T~ T, +410g, P at,

— Geometric Multigrid:
— Work: T.ve~ 950nNn/Pt,

— Communication: T g ~ ( 8log, N/P +30/m, (N/P)¥*+8l0Q,P) at,




Scaling Estimates: Jacobi

* Q: How large must n/P beforT,~T_?




Scaling Estimates: Jacobi

* Q: How large must n/P beforT,~T_?

6(1 + mi2(n/P)2/3) o

T. _
Ta
o = 2300 ]
B 126
mos = 185 )
(n/P) = 2000

14n/P =

BG/P parameters

g Jacobi scaling is independent of P.

g Of course, need occasional all_reduce to check convergence...
g Also, not a scalable algorithm (but, similar to explicit timestepper)




Scaling Estimates: Conjugate Gradients (I)

T 6(1 + ,n,!%('n,/P)z/3 + 4|092P)a <1

To 27 n/P =

P = 10°, logo P = 20, (n/P) ~ 8500
P = 10° logo, P = 30, (n/P) ~ 12000

g The inner-products in CG, which give it its optimality, drive up the
minimal effective granularity because of the log P scaling of all_reduce.

g On BGIL, /P, /Q, however, all_reduce is effectively P-independent.




Eliminating log P term in CG

e OnBG/L, /P, /Q, all_reduce is nearly P-independent.
e For P=524288, all _reduce(1) is only 4«!

BG/Q software all_reduce BG/Q hardware all_reduce

0,01

all_reduce(m)
P=16 - 524288

0,001 F 0,001 F

ndz)
nds )

all_reduce(m)

0, 0001 00001 F

all_reduce time (=zeco

all_reduce time {seco

T

% ping-pong(m) % ping-pong(m)

1 le.lfJ 1l00 1(.300 10.000 100000 1 iU 1lUU 1';300 1UlUUU 100000
Message size m (64-bit words) Message size m (64-bit words)




Not All Platforms Support Fast Collectives

npi_allreduce: with DCHF_COLLECTIVES

*g.000801° u
’o.800027 u 23
fg,808047 u 23
*p.808808° u
9.1 | 2.80016% u
fe.,808327 u 2%
fp.88864° u
7g,80128° u 23
Fe,B8082567 u 2%
| "g.885127 u 2%
7g,081824° u 2:
To,B828487 u 2
*p.84896° u 2%
fg.88192° u
Te,163847 u 2
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8,801

a.8081

all-reduce time

. 1 L 1
1 18 188 1888 18888 188888 o
Hessage Size (64-bit words) 100 101 102 103 ID+ 105

P=1—65,536

In addition to all_reduce on network-interface card, processors
must be allocated on convex subnets — not helter-skelter.

At least one vendor was incredulous that this could possibly be
beneficial. (They were worried about cycle utilization...)




Eliminating log P term in CG

2X4
n s+ Ao s s
To 27 n/P -
n/P ~ 1200

g OnBGIL, /P, /Q, CG is effectively P-independent because
of hardware supported all _reduce.

g In this (admittedly simple) exascale model, net result is a
10x improvement in granularity (n/P=1200 vs. 12,000).

- 10x faster run, but no reduction in power consumption.




Scaling Estimates: Geometric Multigrid (1)

T, (8l0g2n/P + 30(n/P)?/3 + Bloga P) o _
Ta 507,/ P =

n/P (P =103) ~ 13,000
n/P (P =10°%) ~ 17,000
n/P (P = 10°%) ~ 22,000

g Inthis case, granularity is relatively high because of the 8 log, P term,
which is associated with the coarse solve in MG.

g Replacing 8 a log, P with 16a yields n /P ~ 9000, which is > 2x gain
In scalability.

— Such gains could be realized through hardware support in the
network interface card (NIC) for scan / reduce operations.

— Further savings might be possible by reducing the first term.




MG-Lite Code for Testing

 We have built a light-weight scalable MG code for model test and
development which demonstrates the validity of the model for this
analysis.

Measured BG/P Multigrid Performance Modeled BG/P Multigrid Performance
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e 1.1: Left: Measured scalability for 3D geometric multigrid, (T4 + T¢)/Ta as a function of (7
—rying processor counts, P. Right: Modeled scalability for 3D geometric multigrid using 1.1.




Scaling for More Complex Physics

Stefan Kerkemeier ETHZ / ANL

e More complex local physics helps realize finer granularity (but
still, not faster runs).

e Production combustion and reactor simulations on ALCF BG /P
demonstrate scaling to P=131072 with n > .7 for n/P =~ 3000.

BG/P Strong Scaling: P=8192 — 131072
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Parallel Efficiency for Autoignition Application:
> 83% on P=131K, for n/P ~ 6200, E=810,000, N=9
0.2 > 73% on P=131K, for n/P ~ 3100, E=810,000, N=7 ]
| ] |
Ql‘)l 16384 32768 65536 131072

# Cores




Scaling for More Complex Physics

* Any time that communication can be organized into fewer

messages there is a potential gain for reduced latency and
thus finer granularity.

e Examples:

— Time-domain Maxwell’s equations

e 6 fields to update, 6 fluxes exchanged in a single go
e Also, DG implies 6 neighbors per element, not 26 (!)

— Compressible Navier-Stokes / Euler
e 5fields to update in flux vector

* |n these cases, the savings is real.




What Might Be Done?

 Must reduce internode latency.

— MPI Lite?
e Reduced instruction set (say, 8-10 operations)
e Drop support for in-order message arrival

e Strongly tag with sequential tags issued similar to communicators (to
avoid hashing)

— PGAS at the communication interface?
— Nek5000 has NO MPI calls.
» a =dot(u,v,n)
» call gs(handle,u)

e It's also clear that MPI Lite must be scalable
— e.g., not built on mpi_alltoall(), etc.

— we prefer generalized alltomany built on crystal-router (Fox et
al. ‘88)




What Might Be Done?

Recast organized operations in term of a few scan/reduce operations to be
supported in hardware on the NIC.

q Such operations were part-and-parcel of the CM5 programming model (World’s
Fastest Computer in the early 90s).

q This approach has recently been effectively applied in the development of AMG
for GPUs by Bell, Dalton, & Olson (2010).

q It's been shown to be viable for a host of science and graph-based applications (in
particular, Blelloch and co-workers).

q Think of scan/reduce operations as BLAS is to LINPACK / LAPACK.




Conclusions

 Given present-day hardware:
— Fixed clock rate
— Fixed communication/computation costs

we can expect n/P ~ 2000— 10000 as granularity bound.

e A factor of 10 (optimistically) might be realized through hardware-
supported collectives that reduce organized latency-bound
operations.

e MPI-Lite or other schemes for reducing internode latency?

e Such gains would translate into reduced wall-clock time, but no
change in power (unless we also reduce clock rates).




Some Observations, this meeting

 Anton approach — significantly reduced latencies

* |[n a post-Moore’s-Law era, there is opportunity
for customized architectures (J. Shalf).

— (Recall GF-11 and other similar one-off architectures.)

Thank You!




