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Abstract

Here we use a sample of over 50 big data applications to identify
characteristics of data intensive applications and to deduce needed
runtime and architectures.

We propose a big data version of the famous Berkeley dwarfs and
NAS parallel benchmarks as the kernel big data applications.

We suggest that one must unify HPC with the well known Apache
software stack that is well used in modern cloud computing and
surely is most widely used data processing framework in the “real
world”.

We give some examples including clustering, deep-learning and
multi-dimensional scaling. This work suggests the value of a high
performance Java (Grande) runtime that supports simulations and
big data.



‘Digital Universe’ Information Growth = Robust...

+50%, 2013

2/3rd's of Digital Universe Content = Consumed / Created by Consumers
...Video Watching, Social Media Usage, Image Sharing...
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nBD(NIST Big Data) Requirements WG Use Case Template Aug 11 2013

Use Case Title

Vertical (area)

Author/Company/Email

Actors/Stakeholders and
their roles and
responsibilities

Goals

Use Case Description

Current Compute(System)
Solutions

Storage

Networking

Software

Big Data Data Source

Characteristics | (distributed/centralized)

Volume (size)

Velocity
(e.g. real time)

Variety
(multiple datasets,
mashup)

Variability (rate of
change)

Big Data Science Veracity (Robustness
(collection, Issues, semantics)

curation, Visualization

analysis, Data Quality (syntax)

action) Data Types

Data Analytics

Big Data Specific
Challenges (Gaps)

Big Data Specific
Challenges in Mobility

Security & Privacy
Requirements

Highlight issues for
generalizing this use
case (e.g. for ref.
architecture)

More Information (URLs)

Note: <additional comments>

Mote: No proprietary or confidential information should be included

ADD picture of operation or data architecture of application below table

Use Case

“Template
26 fields completed for 51

areas
Government Operation: 4
Commercial: 8

Defense: 3

Healthcare and Life Sciences:
10

Deep Learning and Social
Media: 6

The Ecosystem for Research:
4

Astronomy and Physics: 5

Earth, Environmental and
Polar Science: 10

Energy: 1
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Covers goals, data features such as 3 V’s, software,

hardw
* http://bigdatawg.nist.gov/usecases.php a{EFeatureS for each use case

* https://bigdatacoursespring2014.appspot.com/course (Section 5) Biased to science
* Government Operation(4): National Archives and Records Administration, Census Bureau

 Commercial(8): Finance in Cloud, Cloud Backup, Mendeley (Citations), Netflix, Web Search,
Digital Materials, Cargo shipping (as in UPS)

* Defense(3): Sensors, Image surveillance, Situation Assessment

* Healthcare and Life Sciences(10): Medical records, Graph and Probabilistic analysis,
Pathology, Bioimaging, Genomics, Epidemiology, People Activity models, Biodiversity

* Deep Learning and Social Media(6): Driving Car, Geolocate images/cameras, Twitter, Crowd
Sourcing, Network Science, NIST benchmark datasets

* The Ecosystem for Research(4): Metadata, Collaboration, Language Translation, Light
source experiments

e Astronomy and Physics(5): Sky Surveys including comparison to simulation, Large Hadron
Collider at CERN, Belle Accelerator Il in Japan

 Earth, Environmental and Polar Science(10): Radar Scattering in Atmosphere, Earthquake,
Ocean, Earth Observation, Ice sheet Radar scattering, Earth radar mapping, Climate
simulation datasets, Atmospheric turbulence identification, Subsurface Biogeochemistry
(microbes to watersheds), AmeriFlux and FLUXNET gas sensors

* Energy(1): Smart grid



MO0172 100TB Data feeding into the |Can be rich with Charm++, MPI Simulations on a
World Population simulation is small but |various population Synthetic population
23 |Scale real time data activities,
Epidemiological generated by geographical, socio-
Study simulation is massive. |economic, cultural
variations
MO0173 10s of TB per year During social unrest |Data fusion a big Specialized Models of behavior of
Social Contagion events, human issue. How to simulators, open humans and hard
24 Modeling for interactions and combine data from source software, and |infrastructures, and
Planning mobility leads to rapid |different sources and |proprietary modeling |their interactions.
changes in data: e.g., |how to deal with environments. Visualization of
who follows whom in |missing or incomplete |Databases. results
Twitter. data?
MO141 N/A Real time processing |Rich variety and RDMS Requires advanced
25 |Biodiversity and and analysis in case of |number of involved and rich visualization
LifeWatch the natural or databases and
industrial disaster observation data
MO0136 Current datasets Much faster than real- |Neural Net very In-house GPU kernels |Small degree of batch
Large-scale Deep |typically 1to 10 TB. [time processing is heterogeneous as it and MPI-based statistical pre-
Learning Training a self-driving |required. For learns many different |communication processing: all other
26 car could take 100 autonomous driving | features developed by data analysis is
million images. need to process 1000's Stanford. C++/Python |performed by the
high-resolution (6 source. learning algorithm
megapixels or more) itself.
images per second.
MO0171 500+ billion photos on |over 500M images Images and metadata |Hadoop Map-reduce, |Robust non-linear
27 Organizing large- |Facebook, 5+ billion |uploaded to Facebook |including EXIF tags |simple hand-written |least squares
scale image photos on Flickr. each day (focal distance, multithreaded tools optimization problem.
collections camera type, etc), (ssh and sockets for  |Support Vector
communication) Machine
MO0160 30TB/year Near real-time data Schema provided by |Hadoop Anomaly detection,
28 Truthy compressed data storage, querying &  |social media data IndexedHBase & stream clustering,
analysis source. Currently HDFS. Hadoop, Hive, |signal classification
using Twitter only. Redis for data and online-learning;

~ Part of Property Summary Table

No. | Use Case

Volume

We plan to expand

management. Python:

Information diffusion,

Velocity

Variety

Software

Analytics






Section 5 of my class
bigdatacoursespring2014.appspot.com/preview classifies
51 use cases with ogre facets




HPC Benchmark Classics

* Linpack or HPL: Parallel LU factorization for solution of
linear equations

* NPB version 1: Mainly classic HPC solver kernels
— MG: Multigrid
— CG: Conjugate Gradient
— FT: Fast Fourier Transform
— |IS: Integer sort
— EP: Embarrassingly Parallel
— BT: Block Tridiagonal
— SP: Scalar Pentadiagonal
— LU: Lower-Upper symmetric Gauss Seidel



13 Berkeley Dwarfs

Dense Linear Algebra
Sparse Linear Algebra
Spectral Methods
N-Body Methods
Structured Grids
Unstructured Grids
MapReduce
Combinational Logic
Graph Traversal
Dynamic Programming

First 6 of these correspond to
Colella’s original.

Monte Carlo dropped.

N-body methods are a subset of
Particle in Colella.

Note a little inconsistent in that
MapReduce is a programming
model and spectral method is a
numerical method.

Need multiple facets!

Backtrack and Branch-and-Bound

Graphical Models
Finite State Machines



51 Use Cases: What is Parallelism Over?

People: either the users (but see below) or subjects of application and often both
Decision makers like researchers or doctors (users of application)

Items such as Images, EMR, Sequences below; observations or contents of online
store

— Images or “Electronic Information nuggets”

— EMR: Electronic Medical Records (often similar to people parallelism)

— Protein or Gene Sequences;

— Material properties, Manufactured Object specifications, etc., in custom dataset
— Modelled entities like vehicles and people

Sensors — Internet of Things
Events such as detected anomalies in telescope or credit card data or atmosphere
(Complex) Nodes in RDF Graph
Simple nodes as in a learning network
Tweets, Blogs, Documents, Web Pages, etc.
— And characters/words in them
Files or data to be backed up, moved or assigned metadata
Particles/cells/mesh points as in parallel simulations



51 Use Cases: Low-Level (Run-time)

Computational Types
PP(26): Pleasingly Parallel or Map Only

MR(18 +7 MRStat): Classic MapReduce

IVIRStat(7): Simple version of MR where key computations
are simple reduction as coming in statistical averages

MRIter(23): Iterative MapReduce or MPI
Graph(9): complex graph data structure needed in analysis

Fusion(11): Integrate diverse data to aid
discovery/decision making; could involve sophisticated
algorithms or could just be a portal

Streaming(41): some data comes in incrementally and is
processed this way (Count) out of 51



51 Use Cases: Higher-Level
Computational Types or Features

Classification(30): divide data into categories Not Independent
S/Q/Index(12): Search and Query

CF(4): Collaborative Filtering

LML - Local ML(36): Local Machine Learning (Independent for each entity)

GML - Global ML(23): Deep Learning, Clustering, LDA, PLSI, MDS, Large
Scale Optimizations as in Variational Bayes, Lifted Belief Propagation,
Stochastic Gradient Descent, L-BFGS, Levenberg-Marquardt (Sometimes
call EGO or Exascale Global Optimization — scalable parallel algorithm)

Workflow: (Left out of analysis but ~universal)

GIS(16): Geotagged data and often displayed in ESRI, Microsoft Virtual
Earth, Google Earth, GeoServer etc.

HPC(5): Classic large-scale simulation of cosmos, materials, etc. generates
big data

Agent(2): Simulations of models of data-defined macroscopic entities
represented as agents



Global Machine Learning aka EGO —
Exascale Global Optimization

Typically maximum likelihood or y? with a sum over the N data
items — documents, sequences, items to be sold, images etc. and
often links (point-pairs). Usually it’s a sum of positive numbers as
in least squares

Covering clustering/community detection, mixture models, topic
determination, Multidimensional scaling, (Deep) Learning
Networks

PageRank is “just” parallel linear algebra

Note many Mahout algorithms are sequential — partly as
MapReduce limited; partly because parallelism unclear

— MLLib (Spark based) better

SVM and Hidden Markov Models do not use large scale
parallelization in practice?

Detailed papers on particular parallel graph algorithms
Name invented at Argonne-Chicago workshop






Photos Alone = 1.8B+ Uploaded & Shared Per Day...

Growth Remains Robust as New Real-Time Platforms Emerge

Daily Number of Photos Uploaded & Shared on Select Platforms,
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9 Image-based Use Cases

17:Pathology Imaging/ Digital Pathology: PP, LML, MR for search
becoming terabyte 3D images, Global Classification

18: Computational Bioimaging (Light Sources): PP, LML Also materials

26: Large-scale Deep Learning: GIVIL Stanford ran 10 million images and 11
billion parameters on a 64 GPU HPC; vision (drive car), speech, and Natural
Language Processing

27: Organizing large-scale, unstructured collections of photos: GIVIL Fit
position and camera direction to assemble 3D photo ensemble

36: Catalina Real-Time Transient Synoptic Sky Survey (CRTS): PP, LML
followed by classification of events (GML)

43: Radar Data Analysis for CReSIS Remote Sensing of Ice Sheets: PP, LML
to identify glacier beds; GML for full ice-sheet

44: UAVSAR Data Processing, Data Product Delivery, and Data Services:
PP to find slippage from radar images

45, 46: Analysis of Simulation visualizations: PP LML ?GML find paths,
classify orbits, classify patterns that signal earthquakes, instabilities,
climate, turbulence



Global Internet Device Installed Base Forecast
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Internet of Things and Streaming Apps

It is projected that there will be 24 (Mobile Industry Group) to 50 (Cisco)
billion devices on the Internet by 2020.

The cloud natural controller of and resource provider for the Internet of
Things.

Smart phones/watches, Wearable devices (Smart People), “Intelligent
River” “Smart Homes and Grid” and “Ubiquitous Cities”, Robotics.

Majority of use cases are streaming — experimental science gathers data in
a stream — sometimes batched as in a field trip. Below is sample

10: Cargo Shipping Tracking as in UPS, Fedex PP GIS LML
13: Large Scale Geospatial Analysis and Visualization PP GIS LIVIL

28: Truthy: Information diffusion research from Twitter Data PP MR for
Search, GML for community determination

39: Particle Physics: Analysis of LHC Large Hadron Collider Data: Discovery
of Higgs particle PP Local Processing Global statistics

50: DOE-BER AmeriFlux and FLUXNET Networks PP GIS LML
51: Consumption forecasting in Smart Grids PP GIS LML
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HPC-ABDS
~120 Capabilities
>40 Apache

Green layers have strong HPC Integration opportunities

Goal
Functionality of ABDS
Performance of HPC



Cross-Cutting ‘Workflow-Orchestration

Functionalities  |[ Application and Analytics: Mahout, MUlib,R.. .
Message Protocols Highlevel Programming . """ _
Distributed N . . . Ppamliel HurizontallvScalable bata Pro

Coordination

Security & Privacy

Inter process communication Collectives, point-to-point, publish-subscribe
Monitoring a5 T ST SRR e —

In-memory-databases/caches:. .-

Object-relationalimapping: i« anning - bernase caenins L L

Data Transport '

~120 HPC-ABDS

Cluster Resource Management

Software g
capabilities in 17 || File systems
functionalities — -
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laaS M'éné'géﬁ\ehtfrom-HPC to hypéfviSdrs

{ Kaleidoscope of Apache Big Data Stack (ABDS) and HPC Technologies




SPIDAL (Scalable Parallel Interoperable Data Analytics Library)
Getting High Performance on Data Analytics

On the systems side, we have two principles:
— The Apache Big Data Stack with ~120 projects has important broad
functionality with a vital large support organization
— HPC including MPI has striking success in delivering high performance,
however with a fragile sustainability model
There are key systems abstractions which are levels in HPC-ABDS software stack
where Apache approach needs careful integration with HPC
— Resource management
— Storage
— Programming model -- horizontal scaling parallelism
— Collective and Point-to-Point communication
— Support of iteration
— Data interface (not just key-value)
In application areas, we define application abstractions to support:
— Graphs/network
— Geospatial
— Genes
— |Images, etc.



HPC-ABDS Hourglass

HPC ABDS :
120 Software Projects

System (Middleware)

System Abstractions/standards
*Data format
*Storage

 HPC Yarn for Resource management

* Horizontally scalable parallel programming model
* Collective and Point-to-Point communication

e Support of iteration (in memory databases)

Application Abstractions/standards
Graphs, Networks, Images, Geospatial ....

SPIDAL (Scalable Parallel
High performance | Interoperable Data Analytics Library)

Applications or High performance Mahout, R,
Matlab...



Useful Set of Analytics Architectures

Pleasingly Parallel: including local machine learning as in
parallel over images and apply image processing to each image

- Hadoop could be used but many other HTC, Many task tools

Search: including collaborative filtering and motif finding
implemented using classic MapReduce (Hadoop)

Map-Collective or Iterative MapReduce using Collective
Communication (clustering) — Hadoop with Harp, Spark .....

Map-Communication or Iterative Giraph: (MapReduce) with
point-to-point communication (most graph algorithms such as
maximum clique, connected component, finding diameter,
community detection)

— Vary in difficulty of finding partitioning (classic parallel load balancing)

Shared memory: thread-based (event driven) graph algorithms
(shortest path, Betweenness centrality)

Ideas like workflow are “orthogonal” to this







Application Class Facet of Ogres

Classification (30) divide data into categories

Search Index and query (12)

Maximum Likelihood or %2 minimizations

Expectation Maximization (often Steepest descent)

Local (pleasingly parallel) Machine Learning (36) contrasted to

(Exascale) Global Optimization (23) (such as Learning Networks,
Variational Bayes and Gibbs Sampling)

Do they Use Agents (2) as in epidemiology (swarm approaches)?

Higher-Level Computational Types or Features in earlier slide also has
CF(4): Collaborative Filtering in Core Analytics Facet

and two categories in data source and style

GIS(16): Geotagged data and often displayed in ESRI, Microsoft Virtual
Earth, Google Earth, GeoServer etc.

HPC(5): Classic large-scale simulation of cosmos, materials, etc.
generates big data



iv.

Vi.

Vil.

Problem Architecture Facet of Ogres (Meta or

MacroPattern)
Pleasingly Parallel — as in BLAST, Protein docking, some (bio-

Jimagery including Local Analytics or Machine Learning — ML or
filtering pleasingly parallel, as in bio-imagery, radar images
(pleasingly parallel but sophisticat Slight expansion of an earlier slides on:

Classic MapReduce for Search anc Major Analytics Architectures in Use Cases

Global Analytics or Machine Lear) P'easingly parallel

I S Search (MapReduce)
programming modeils Map-Collective

Problem set up as a graph as opp: Map-Communication as in MPI
i . Shared Memory
SPMD (Single Program Multiple C

Bulk Synchronous Processing: we Low-Level (Run-time) Computational Types
used to label 51 use cases

communication phases PP(26): Pleasingly Parallel

Fusion: Knowledge discovery ofte MR(18 +7 MRStat): Classic MapReduce

MRStat(7)
methods. MRIter(23)

viii. Workflow (often used in fusion) Graph(9)

Fusion(11)

Note problem and machine architecti s:.c.ming(41) In data source



4 Forms of MapReduce

Sl

| |

l map

L e /)

[+] [+]

(b) Classic (c) Iterative Map Reduce| (4 Point to Point
(a) Map Only MapReduce or Map-Collective (@)
- Input Input lterations
npu

N

Local Machine Learning

Pleasingly Parallel

(HEP) Histograms

Distributed search

Expectation maximization

Clustering e.g. K-means

Linear Algebra, PageRank

o o ( )
l l l reduce \____
reduce
Output =
BLAST Analysis High Energy Physics

Classic MPI
PDE Solvers and

particle dynamics

: Domain of MapReduce and Iterative Extensions —

MPI

Giraph

All of them are Map-Communication?




One Facet of Ogres has Computational Features
a) Flops per byte;

b) Communication Interconnect requirements;
c) Is application (graph) constant or dynamic?

d) Most applications consist of a set of interconnected
entities; is this regular as a set of pixels oris it a
complicated irregular graph?

e) Is communication BSP or Asynchronous? In latter case
shared memory may be attractive;

f) Are algorithms Iterative or not?

g) Data Abstraction: key-value, pixel, graph, vector
= Are data points in metric or non-metric spaces?

h) Core libraries needed: matrix-matrix/vector algebra,
conjugate gradient, reduction, broadcast



Data Source and Style Facet of Ogres

(i) sQL

(ii)) NOSQL based

(iii) Other Enterprise data systems (10 examples from Bob Marcus)
(iv) Set of Files (as managed in iRODS)

(v) Internet of Things

(vi) Streaming and

(vii) HPC simulations

(viii) Involve GIS (Geographical Information Systems)

Before data gets to compute system, there is often an initial data gathering
phase which is characterized by a block size and timing. Block size varies
from month (Remote Sensing, Seismic) to day (genomic) to seconds or
lower (Real time control, streaming)

There are storage/compute system styles: Shared, Dedicated, Permanent,
Transient

Other characteristics are needed for permanent auxiliary/comparison
datasets and these could be interdisciplinary, implying nontrivial data
movement/replication






Core Analytics Facet of Ogres (microPattern) |
 Map-Only
* Pleasingly parallel - Local Machine Learning
* MapReduce: Search/Query
e Summarizing statistics as in LHC Data analysis (histograms)
e Recommender Systems (Collaborative Filtering)
* Linear Classifiers (Bayes, Random Forests)

* Global Analytics

* Nonlinear Solvers (structure depends on objective function)
— Stochastic Gradient Descent SGD
— (L-)BFGS approximation to Newton’s Method
— Levenberg-Marquardt solver

* Map-Collective | (need to improve/extend Mahout, MLIib)
e Qutlier Detection, Clustering (many methods),

 Mixture Models, LDA (Latent Dirichlet Allocation), PLSI (Probabilistic
Latent Semantic Indexing)



Core Analytics Facet of Ogres (microPattern) Il

Map-Collective Il

Use matrix-matrix,-vector operations, solvers (conjugate gradient)
SVM and Logistic Regression

PageRank, (find leading eigenvector of sparse matrix)

SVD (Singular Value Decomposition)

MDS (Multidimensional Scaling)

Learning Neural Networks (Deep Learning)

Hidden Markov Models

Map-Communication

Graph Structure (Communities, subgraphs/motifs, diameter,
maximal cliques, connected components)

Network Dynamics - Graph simulation Algorithms (epidemiology)
Asynchronous Shared Memory
Graph Structure (Betweenness centrality, shortest path)
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e DAVS(2) « DA2D

Temperature

* All start with one cluster at far left
e T=1 special as measurement errors divided out
 DAZ2D counts clusters with 1 member as clusters. DAVS(2) does not




WDA SMACOF MDS (Multidimensional

Scaling) using Harp on IU Big Red 2
Parallel Efficiency: on 100-300K sequences

120 Best available
MDS (much

- better than
that in R)
Java

Parallel Efticiency

Cores =32 #nodes Harp (Hadoop

0.00 .
0 20 40 60 80 100 120 140 pl ugl n)
Number of Nodes d escCri bEd by

—— | 00K points ——200K points 300K points Qi u I at er

Conjugate Gradient (dominant time) and Matrix Multiplication



1000000 points 10000000 points 100000000 points
50000 centroids 5000 centroids 500 centroids
10000-
1000-
E=
i w
100 8 3
10-
1 4
1.0- \ '—g -
0.1 <
24 48 96 24 48 96 24 48 96

Number of Cores
B Hadoop MR M Mahout M Python Scripting M Spark M Harp = MPI

Mahout and Hadoop MR — Slow due to MapReduce
Python slow as Scripting; MPI fastest
Spark Iterative MapReduce, non optimal communication







Comparison of Data Analytics with

Simulation |
* Pleasingly parallel often important in both

e Both are often SPMD and BSP

* Non-iterative MapReduce is major big data paradigm

— not a common simulation paradigm except where “Reduce”
summarizes pleasingly parallel execution

* Big Data often has large collective communication

— Classic simulation has a lot of smallish point-to-point
messages

e Simulation dominantly sparse (nearest neighbor) data
structures

— “Bag of words (users, rankings, images..)” algorithms are
sparse, as is PageRank

— Important data analytics involves full matrix algorithms



Comparison of Data Analytics with
Simulation Il

There are similarities between some graph problems and particle
simulations with a strange cutoff force.

— Both Map-Communication

Note many big data problems are “long range force” as all points are
linked.

— Easiest to parallelize. Often full matrix algorithms

— e.g. in DNA sequence studies, distance o(/, j) defined by BLAST,
Smith-Waterman, etc., between all sequences j, J.

— Opportunity for “fast multipole” ideas in big data.

In image-based deep learning, neural network weights are block
sparse (corresponding to links to pixel blocks) but can be formulated
as full matrix operations on GPUs and MPI in blocks.

In HPC benchmarking, Linpack being challenged by a new sparse
conjugate gradient benchmark HPCG, while | am diligently using non-
sparse conjugate gradient solvers in clustering and Multi-
dimensional scaling.






Java Grande

We once tried to encourage use of Java in HPC with Java
Grande Forum but Fortran, C and C++ remain central HPC
languages.

— Not helped by .com and Sun collapse in 2000-2005

The pure Java CartaBlanca, a 2005 R&D100 award-winning
project, was an early successful example of HPC use of Java in a
simulation tool for non-linear physics on unstructured grids.

Of course Java is a major language in ABDS and as data analysis
and simulation are naturally linked, should consider broader
use of Java

Using Habanero Java (from Rice University) for Threads and
mpilava or FastMPJ for MPI, gathering collection of high
performance parallel Java analytics

— Converted from C# and sequential Java faster than sequential C#

So will have either Hadoop+Harp or classic Threads/MPI
versions in Java Grande version of Mahout



Performance of MPI Kernel Operations
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Lessons / Insights

Integrate (don’t compete) HPC with “Commodity Big data”
(Google to Amazon to Enterprise Data Analytics)

— i.e. improve Mahout; don’t compete with it
— Use Hadoop plug-ins rather than replacing Hadoop

Enhanced Apache Big Data Stack HPC-ABDS has ~120
members

Opportunities at Resource management, Data/File,
Streaming, Programming, monitoring, workflow layers for
HPC and ABDS integration

Data intensive algorithms do not have the well developed
high performance libraries familiar from HPC

Global Machine Learning or (Exascale Global Optimization)
particularly challenging

Strong case for high performance Java (Grande) run time
supporting all forms of parallelism



