

The UberCloud

From Project to Product

From HPC Experiment to HPC Marketplace

From HPC Shop to HPC Shopping Mall

HPC 2014, Cetraro, July 7 – 11, 2014

Wolfgang Gentzsch

President, The UberCloud

Burak Yenier

CEO, The UberCloud

The UberCloud

From Project to Product

From HPC Experiment to HPC Marketplace

From HPC Shop to HPC Shopping Mall

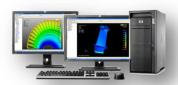
HPC 2014, Cetraro, July 7 – 11, 2014

Product innovation and scientific insight require computing

Engineers & scientists computing tools: workstations, servers, and clouds

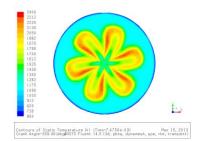
3 options to use technical compute power

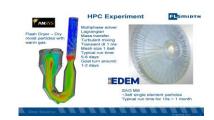
Benefits of HPC in the Cloud

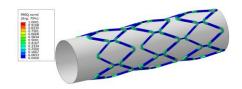

Continue using your workstation for your daily design, and use Cloud resources with **additional** benefits:

- + An HPC system at your finger tip, on demand
- + Pay per use (no CAPital EXpenditure)
- + Scaling resources up and down (business flexibility)
- **+ Low risk** by working with multiple cloud providers.


+ Workstation: slow, limited capacity

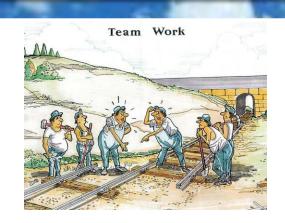



- **+ HPC server:** expensive (TCO!), complex
- + HPC in the Cloud: security, licensing, data transfer, expertise, and ...

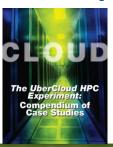


+ Very crowded cloud services market, difficult to find your ideal service

It all started June 2012 with the free voluntary UberCloud **Experiments**


HPC as a Service, on demand, in a team experiment

to explore the end-to-end **process**of using **remote** computing resources,
as a **service**, on demand, at your finger tip,
and learning how to resolve the roadblocks.



- + End-User registers
- + Software Vendor joins
- + We select a **Team Expert**
- + Matching a Resource Provider

- + Assigning an UberCloud mentor
- + Now, the team is ready to go
- + Finally, writing the Case Study
- + 152 UberCloud Experiments so far
- + 42 case studies in Compendium I & II

22 Steps Towards a successful project **Step 1:** define end-user project

- + 1.1: TE & EU fill out "Project definition" docu
- + 1.2: UC assigns SP based on "Project definition" docu
- + 1.3: UC + TM assign RP based on "Project definition" docu
- + 1.4: TE calls for a kick-off meeting over Skype via Doodle
- + 1.5: RP fills out "Computing resources" docu
- + 1.6: SP fills out "Software resources" docu
- + 1.7: If custom code, EU fills out "Software resources" docu
- + 1.8 TE + TM review UC Exhibit, consider additional services

EU = end user, SP = software provider, RP = resource provider, TE = team expert, TM = team mentor, UC UberCloud

22 Steps Towards a successful project Step 2 & 3: resources & execution

Step 2: Contact the resources, set up the project environment

- + 2.1: TE gets resources using "Computing resources" docu
- + 2.2: TE & RP set up software using "Software resources" docu
- + 2.3: TE & RP set up EU code using "Software resources" docu
- + 2.4: TE & RP configure project environment
- + 2.5: TE performs a trial run

Step 3: Initiate project execution on cloud resources

- + 3.1: TE & EU upload data to the project environment
- + 3.2: TE & RP queue the job(s) for the project

EU = end user, SP = software provider, RP = resource provider, TE = team expert, TM = team mentor, UC UberCloud

22 Steps Towards a successful project **Step 4-6**: monitor, review, report

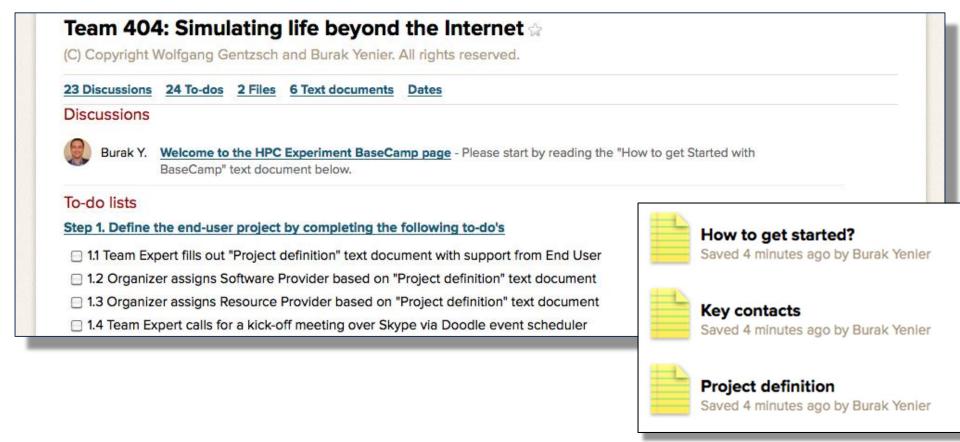
Step 4: Monitor the project

- + 4.1: TE monitors the job status
- + 4.2: TE & EU re-set parameters between runs as needed
- + 4.3: TE & RP performs post processing, such as remote viz

Step 5: Review your results

- + 5.1: TE makes results available to EU, if needed repeats Step 2-5
- + 5.2: TE & RP remove EU data from project environment

Step 6: Document your findings


- + 6.1: TE initiates docu "Template for UC Experiment Uses Cases"
- + 6.2: TE requests team to contribute to and review the docu

EU = end user, SP = software provider, RP = resource provider, TE = team expert, TM = team mentor, UC UberCloud

Step by Step process

Basecamp project management platform for each team

The UberCloud HPC Experiments

amazon

Started July 2012, 2000 participants, 72 countries

Example: Amazon AWS in the UberCloud:

+ Team 2: Simulation of a Multi-resonant Antenna System

+ Team 20: Turbo-machinery Application Benchmarks

+ Team 30: Heat Transfer Use Case

+ Team 40: Simulation of Spatial Hearing

+ Team 65: Weather Research with WRF

+ Team 70: Next Generation Sequencing Data Analysis

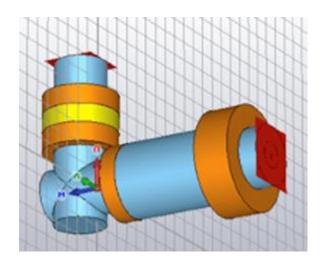
+ Team 116: Quantitative Finance Historical Data Modeling

+ Team 142: Virtual Testing of Severe Service Control Valve

+ Team 147: Compressor Map Generation Using Cloud-Based CFD

Team 2: Simulating new probe design for a medical device

HPC Expert: Chris Dagdigian



Co-founder and Principal Consultant

BioTeam Inc

End User: wanted to stay anonymous

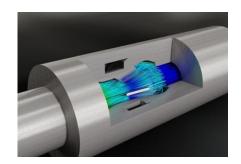
Team 70 Case Study: Next Generation Sequencing Data Analysis

+ MEET TEAM 70:

- + End User Thomas Dyar, Senior Genomics Data Scientist, Betty Diegel, Senior Software Engineer, medical devices company
- + Software Provider Brian O'Connor, CEO Nimbus Inform... Cloud services for workflows utilizing SeqWare
- + Resource Provider Amazon Web Services
- + HPC Cloud Experts Cycle Computing

Team 142 Case Study: Virtual testing of severe service control valve

+ MEET TEAM 142:



Flowserve Corporation Image

- + End User Mark Lobo, Lobo Engineering;
- + Software Provider Derrek Cooper, Autodesk CFD 360
- + Resource Provider Amazon Web Services

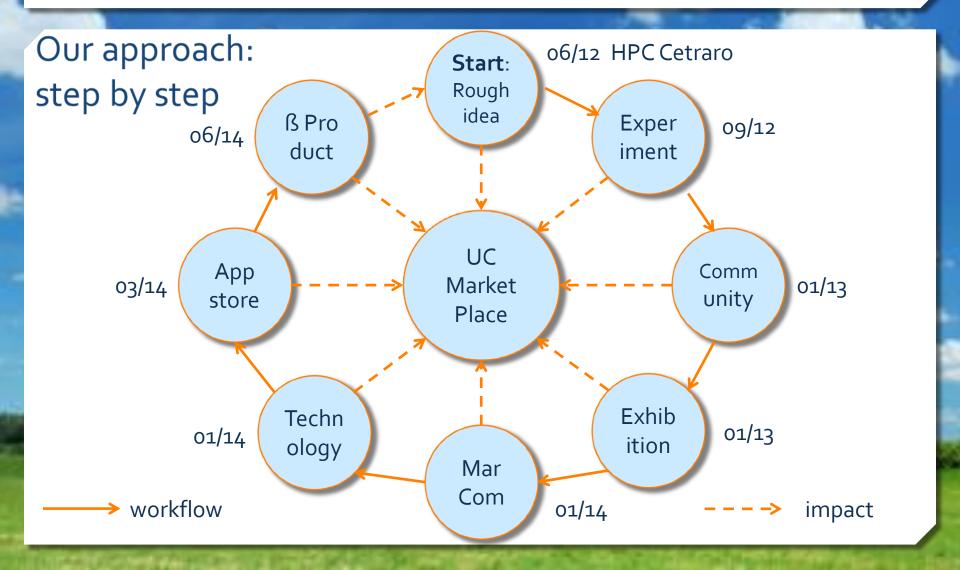
+ HPC Cloud Experts – Jon den Hartog and Heath Houghton Autodesk

- + HPC is complex; at times it requires multiple experts
- + Reaching out to industry end-users
- + No standards: access and usage of hw & sw providers are different, some are complex

AHEAD

- + Lack of automation: Currently the end-to-end process of the HPC experiment is manual (intentionally).
- + Time delays: vacation, conferences, and everybody has a day job (busy!)
- + Barriers: Complexity, data transfer, security, IP, software licenses, performance, interoperability...

AND: we learn a lot


- + Time delays: Vacation times in July/August and December
- + No standards: Access and usage processes of hw & sw providers are different, some complex

- + Hands-on: Process automation at providers vary greatly.
- + Lack of automation: Currently the end-to-end process of the HPC experiment is manual (intentionally).
- + Participants spent relatively small portion of their time, some are responsive, others are not: it is not their day job!
- + Getting regular updates from Team Experts is a challenge because this is not their day job!

Building a marketplace demands building an ecosystem

Problem: today's crowded and ineffective cloud 'market'

Supply

Cloud providers
ISVs

Consultants

Trainers

Demand

Engineers
Scientists
Data analysts
Experts

Solution: The UberCloud Marketplace

UberCloud Marketplace

Supply

Cloud providers

ISVs

Consultants

Trainers

Demand

Engineers
Scientists
Data analysts
Experts

Solution: The UberCloud Marketplace

UberCloud Marketplace

for 20+ million engineers and scientists

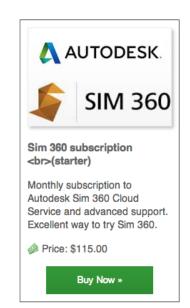
and their service providers

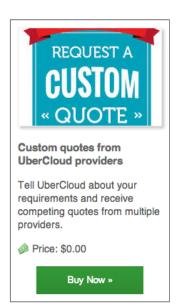
to discover, try, buy, and sell

computing time, storage, software and expertise

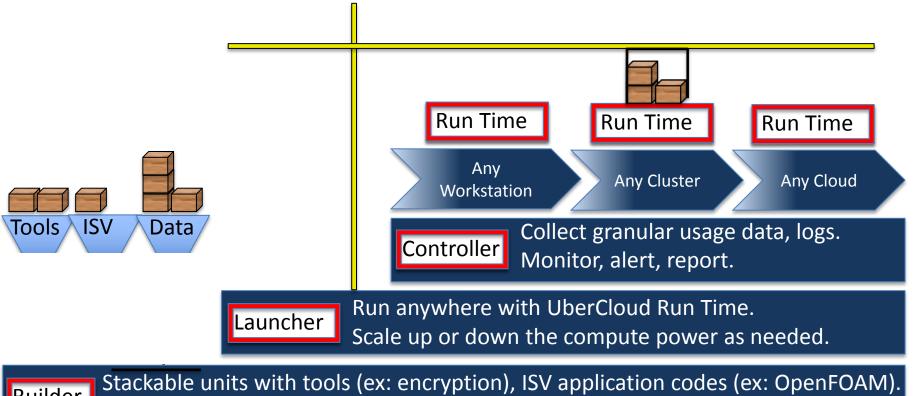
on demand

Announcement at


HOME | LOGOUT BURAK YENIER | MY PROFILE | HELP \\ ■1



UberCloud Marketplace


Solution:

Standard Cloud Run-Time Environment

- + Building thin, light-weight **run-time environment** (RTE) on top of Linux kernel features and open source tools, which
 - + provides a **standard** platform across distributed in-house, grid, and cloud resources
 - + facilitates access to all kinds of resources (workstations, servers, and private, hybrid, and public clouds)
 - + moving portable, stackable units including end-users app, data, tools seamlessly btwn in-house and external resources
 - + enables **portability** across different in-house and external resources (federation)
- + reducing / removing many of the cloud challenges

Build once, run anywhere

Builder Just add your own codes and data.

Portable Units are like containers

- + Standard software units (with user's app, data, tools etc.) can be moved seamlessly across any set of resources.

 Units are
 - + stackable and portable,
 - + built from a base unit with standard functionality (security, encryption, compression, monitoring, data transfer, etc)
 - + extended by the ISV's software as next layer,
 - + top layer is the end-users configuration and data.

Next Steps: Reducing / Removing Cloud Challenges

Challenge *)	Addressed today	With UberCloud **)
Portability	low	high
Security	medium	high
Software Licenses	low	medium
Data Transfer	low	medium
Compliance	low	medium
Standardization	low	high
Cost & ROI Transparency	low	high
Resource Availability	medium	high
Transparency of Market	low	high
Cloud Computing Expertise	low	medium

^{*)} Cloud challenges are addressed low, or medium, or high

^{**)} When UberCloud is fully developed two years from now

It's your turn now ©

- + <u>Download 2013 Compendium of case studies from</u> <u>HPCwire</u>
- + Download 2014 Compendium of case studies
- + Register at The Uber Cloud.com
- + <u>Try the UberCloud Marketplace</u> with \$1 voucher and you get
- **+** NOW

NOW

The UberCloud Community and Marketplace

Thank You!

Register free at

http://www.TheUberCloud.com