
> Towards High-Level Programming
for Systems with Many Cores

Sergei Gorlatch and Michel Steuwer

Parallel and Distributed Systems Group
Department of Mathematics and Computer Science
University of Münster, Germany

2Many-Cores and Programming

• Many-cores: Multi-core CPUs + GPUs ⇒ 102 − 104 − 106 cores

• State-of-the-art programming for many-cores:

• Challenges on a system with just one GPU:
• coordination of hundreds/thousands of work-items (≈ threads)
• data transfers to and from GPU
• handling of the complex memory hierarchy

• Additional challenges for multi-GPU systems:
• work balancing to keep all GPUs busy
• managing of data transfers between GPUs⇒ Two major drawbacks of the state-of-the-art approaches:
• explicit, low-level coding produces lengthy, error-prone programs
• missing formal base hinders optimizations through code transformations,

performance prediction, reasoning and verification, etc.

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

3SkelCL – Overview

Our approach: SkelCL (Skeleton Computing Language) –
a high-level programming model on top of OpenCL

Advantages of building on top of OpenCL:
• hardware- and vendor-independent, portable
• access to arbitrary OpenCL device, multi-core CPUs, GPUs,
and other accelerators (Cell, FPGA, . . .)

Advantages of high-level constructs:
• shorter and better structured codes
• formal semantics => transformations and performance modeling

Three high-level mechanisms in SkelCL:
• Parallel container data types for automatic memory management

• Data (re)distributions for automatic data exchange between multiple GPUs

• Parallel patterns (skeletons) for expressing parallel computations

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

4Container Data Types

• Container data types (Vector and Matrix) make memory management
implicit for both CPU and GPUs in the system

• For programmer’s convenience:
• Memory is allocated automatically on the GPU
• Automatic data transfers between the host and the GPU memory

• We use lazy copying to minimize data transfers:
• Data is not transfered right away, but rather only when needed
• Example: Output vector is used as input to another computation
• The output vector’s data is not copied to host but resides in device memory⇒ no data transfer needed, which leads to improved performance

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

5(Re)Distribution Mechanisms

For partitioning data across multiple GPUs, there are four data distributions:

CPU

GPUs0 1

CPU

GPUs0 1

CPU

GPUs0 1

CPU

GPUs0 1

(a) single (b) copy (c) block (d) overlap

• The distributions are either chosen by the programmer,
or SkelCL automatically chooses default distributions

• Distributions for vector shown here, same distributions exist for matrix
• Changing distribution at runtime triggers automatic data exchange, e. g.:

vector.setDistribution(Distribution :: block);

• All required data transfers are performed automatically by SkelCL!

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

6Parallel Skeletons

• The programmer expresses computations using pre-implemented parallel
patterns, a. k. a. algorithmic skeletons (higher-order functions)

• Skeletons are customized by application-specific functions
• Four basic (Map, Zip, Reduce, Scan) and three specialized (MapOverlap,
Stencil, Allpairs) skeletons are currently provided

map

x0

x1

...

xn

y0

y1

...

yn

f

f

f

zip

x0

x1

...

xn

y0

y1

...

yn

z0

z1

...

zn

⊕

⊕

⊕

reduce

x0

x1

...

xn z

⊕

...

⊕

scan

x0

x1

...

xn

y0

y1

...

yn

⊕

⊕

...

• Example: Calculation of the vector dot product expressed with skeletons:

dotProd(a, b) =

d∑
k=1

ak · bk = reduce(+)
(
zip(·)(a, b)

)

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

7

SkelCL – First Example
Dot product

Calculation of the dot product:
d∑

k=1

ak · bk = reduce(+)
(
zip(·)(a, b)

)

using namespace skelcl;
float dot_product(const std::vector <float >& a,

const std::vector <float >& b) {
skelcl ::init(); // initialize SkelCL

// declare computation by customizing skeletons:
Zip <float > mult("float f(float x, float y){ return x*y; }");
Reduce <float > sum_up("float f(float x,float y){return x+y;}","0");

// create data vectors:
Vector <float > A(a.begin(), a.end());
Vector <float > B(b.begin(), b.end());

// perform calculation:
Vector <float > C = sum_up(mult(A, B));
return C.front(); // access result

}

SkelCL: 7 lines of code vs. OpenCL: 68 lines of code (NVIDIA example)

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

8Allpairs Skeleton

• Allpairs computations:
The same computation is performed for all
possible pairs of vectors from two matrices

• Possible applications: N-body simulation, matrix
multiplication, etc.

• Matrix multiplication expressed using allpairs: A

BT

C

1

2

3

A× B = allpairs(dotProd)(A,BT), where dotProd(a, b) =

d∑
k=1

ak · bk

Allpairs <float > mm(
"float func(float_matrix_t a, float_matrix_t b) {\
float c = 0.0f;\
for (int i = 0; i < width(a); ++i) {\

c += getElementFromRow(a, i) * getElementFromCol(b, i); }\
return c; }");

Matrix <float > result = mm(A, B);

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

9Optimizing Allpairs

Specialization rules enable optimizations of skeleton implementations

Proposition. If the customizing function of the allpairs skeleton
can be expressed as a seq. composition of zip and reduce, then
an optimized GPU implementation can be automatically derived

• Example matrix multiplication: A×B = allpairs(dotProd)(A,BT), where

dotProd(a, b) =

d∑
k=1

ak · bk = reduce(+)
(
zip(·)(a, b)

)

Zip <float > mult("float f(float x,float y){return x*y;}");
Reduce <float > sum_up("float f(float x,float y){return x+y;}", "0");
Allpairs <float > mm(sum_up , mult);
Matrix <float > result = mm(A, B);

• Optimized implementation uses additional semantical information of zip and
reduce to make use of the fast local GPU memory

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

10

Runtime Results
Matrix Multiplication

• NVIDIA System using one Tesla GPU with 240 streaming processors

OpenCL Optimized OpenCL cuBLAS clBLAS Generic allpairs skeleton Allpairs skeleton with zip−reduce

0.000

0.025

0.050

0.075

0.100

0.125

1024 x 1024

0.0

0.2

0.4

0.6

0.8

2048 x 2048

0.0

2.0

4.0

6.0

4096 x 4096

Matrix Size

0

10

20

30

40

50

8192 x 8192

0

100

200

300

400

16384 x 16384

R
un

tim
e

in
 S

ec
on

ds

• Specialized allpairs implementation is ≈ 7 times faster than first
implementation, and close to the performance of BLAS implementations

• cuBLAS implementation is the fastest as it is highly tuned by the vendor,
but restricted to matrix multiplication and to NVIDIA hardware

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

11

The Allpairs Skeleton
using Multiple GPUs

The allpairs skeleton works for multi-GPU systems as well

• SkelCL automatically divides the computation
among GPUs using its distribution feature

• By using the semantics of the allpairs skeleton:
• Matrix A and C are block distributed,

i. e. row-divided across GPUs
• Matrix B is copy distributed,

i. e. copied entirely to all GPUs

• The distributions are selected automatically⇒ No additional lines of code necessary
• Good scalability:
Four GPUs are 3.57 faster than one GPU

A

B

C

GPU 1

GPU 2

0

20

40

60

1 2 3 4
Number of GPUs

R
un

tim
e

in
 S

ec
on

ds

16384 x 16384

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

12

Programming effort
Matrix Multiplication

0

25

50

75

OpenCL Optimized OpenCL BLAS (AMD) BLAS (NVIDIA) SkelCL

Li
ne

s
of

 C
od

e

GPU Code CPU Code

• SkelCL: 9 lines vs. BLAS: 65 and 81 lines vs. OpenCL 84 and 88 lines

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

13

Skeletons for Stencil
Computations

Two new skeletons for supporting stencil computations: MapOverlap and Stencil

• Both skeleton are similar to Map: executes given function for every element
• But customizing function can take neighboring elements in into account

• Application developer provides:
• The customizing function
• A description of the stencil shape
• Out-of-bound handling: accesses returns either neutral or nearest value

• MapOverlap skeleton for simple stencil applications
• Stencil skeleton for more complex iterative stencil applications

SkelCL provides fast multi-GPU ready implementations of these skeletons.

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

14

Sobel edge detection with
MapOverlap

• Produces an output image marking all edges in the input image white
• Basic idea: Search for differences in color as compared to neighboring pixels

Original "‘Lena"’ image

Output of the sobel edge
detection

SkelCL implementation:

MapOverlap <char(char)> m(
"char func(const char* img) {

short h = -1*get(img ,-1,-1)
+1* get(img ,+1,-1)
-2*get(img ,-1, 0)
+2* get(img ,+1, 0)
-1*get(img ,-1,+1)
+1* get(img ,+1 ,+1);

short v = // ...
return sqrt(h*h + v*v);

}", 1, Padding ::NEUTRAL , 0);

// execution of the skeleton
Matrix <char > out_img = m(img);

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

15

Sobel edge detection:
SkelCL implementation

Application is a perfect fit for the MapOverelap skeleton

Sequential implementation:
(boundary checks omitted)

for (i = 0; i < width; ++i)
for (j = 0; j < height; ++j)
h = -1*img[i-1][j-1]

+1* img[i+1][j-1]
-2*img[i-1][j]
+2* img[i+1][j]
-1*img[i-1][j+1]
+1* img[i+1][j+1];

v = // ...
out_img[i][j]=sqrt(h*h+v*v);

SkelCL implementation:

MapOverlap <char(char)> m(
"char func(const char* img) {

short h = -1*get(img ,-1,-1)
+1* get(img ,+1,-1)
-2*get(img ,-1, 0)
+2* get(img ,+1, 0)
-1*get(img ,-1,+1)
+1* get(img ,+1 ,+1);

short v = // ...
return sqrt(h*h + v*v);

}", 1, Padding ::NEUTRAL , 0);

// execution of the skeleton
Matrix <char > out_img = m(img);

• SkelCL implementation is very similar to the sequential version (good!)

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

16

Sobel edge detection:
OpenCL implementation

• OpenCL implementation requires additional low-level code, like:
• Knowledge and use of OpenCL keywords and functions
• Boundary checks
• Pointer arithmetic

__kernel void sobel_kernel(__global const char* img ,
__global char* out_img ,
int w, int h) {

size_t i = get_global_id (0); size_t j = get_global_id (1);

if(i < w && j < h) { // perform boundary checks manually
char ul = (j-1 > 0 && i-1 > 0) ? img [((j-1)*w)+(i-1)] : 0;
char um = (j-1 > 0) ? img[((j-1)*w)+(i+0)] : 0;
// ... 7 more of these lines

out_img[j * w + i] = computeSobel(ul, um, ...,); } }

OpenCL requires almost five times more lines of code than SkelCL (19 vs. 4)

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

17More complex stencils with Stencil

• Iterative applications (e.g.
simulations) can be performed
using the Stencil skeleton

• Non-square stencil shapes can
be expressed

• Example: Simulation of heat
transfer

• Often applications consist of
multiple stencils

• Example: Canny algorithm for
more advanced edge detection

Stencil <char(char)> heatSim(
"char func(const char* in) {
char lt = get(in, -1, -1);
char lm = get(in, -1, 0);
char lb = get(in, -1, +1);
return computeHeat(lt,lm,lb); }",

StencilShape (1, 0, 1, 1),
Padding ::NEUTRAL , 255);

output = heatSim (100, input);

Stencil <Pixel(Pixel)> gauss (...);
Stencil <Pixel(Pixel)> sobel (...);
Stencil <Pixel(Pixel)> nms (...);
Stencil <Pixel(Pixel)> threshold (..);

StencilSequence <Pixel(Pixel)> canny(
gauss , sobel , nms , threshold);

output = canny(1, input);

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

18Multi-GPU Systems

• Automatic support for multi-GPU Systems
• Using the overlap distribution elements on the "border" are stored on 2 GPUs
• Data exchange is necessary between iterations
• Currently implemented by copying data to the CPU and back to the GPUs

Host

Device 0

Device 1

Device 2

Device 0

Device 1

Device 2

• Everything is done automatically. No change of source code necessary!

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

19Implementation & Performance

• Both skeletons automatically use fast local memory
• Implementation of the MapOverlap skeleton avoids some out-of-bound
accesses by extending the input data

• For Stencil skeleton all out-of-bound handling is done on GPU to support
sequences of Stencils (with different handling modes)

Performance for Gaussian Blur:

Ti
m

e
in

 S
ec

on
ds

0

1

2

3

4

5

Size of Stencil Shape

1 2 3 4 5 6 7 8 9 10

OpenCL Global Memory OpenCL Local Memory
MapOverlap Stencil

201 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4

1

2

3

Size of Stencil Shape

Sp
ee

du
p

1 Device

2 Devices

3 Devices

4 Devices

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

20

Application: Computer
Tomography

• Application study: List-Mode Ordered Subset
Expectation Maximization (LM OSEM)

• LM OSEM is a time-intensive image reconstruction
algorithm, takes hours on a PC ⇒ not practical

• 3D-images are reconstructed from sets of events recorded by
a scanner; events are split into subsets, processed iteratively

• In every iteration a subset is processed in two steps:
• Subset’s events (S) are used to process an error image (c)
• The error image is used to update a reconstruction image (f)

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

21Parallelizing LM OSEM

• The two computational steps require different parallelization approaches:
• Step 1: divide subset’s events (S) across processing units, every processing

unit requires copy of reconstruction image (f) to compute an error image (c)
• Step 2: divide error image (c) and reconstruction image (f) to refine the

reconstruction image
G
P
U

0
C
P
U

G
P
U

1

S fl

S fl

S fl

cl

cl

⇒

⇒

cl

cl

cl

fl

fl

fl

fl

fl

⇒

⇒

fl+1

Upload Redistribution Download

Step 1 Step 2

• In SkelCL:
• S, f, and c are expressed as SkelCL vectors
• Step 1 and Step 2 are expressed using algorithmic skeletons
• Distribution and redistribution of data is easily expressed in SkelCL

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

22LM OSEM Results

0

100

200

300

400

SkelCL OpenCL

Li
ne

s
of

 c
od

e

GPU part

CPU part

0

1

2

3

1 2 4
Number of GPUs

R
un

tim
e

in
 s

ec
on

ds

SkelCL

OpenCL

• Lines of code for the CPU part was drastically reduced: from 243 to only 32
• SkelCL only introduces a moderate overhead of less than 5%

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

23Conclusion

• SkelCL is a high-level programming model for (multi-)GPU programming
• Three high-level features: Container data types; Distributions; Skeletons
• Container data types implicitly transfer data to and from the devices⇒ No explicit data transfers to and from GPUs

• Distributions simplify parallelization across multiple GPUs⇒ No explicit managing of data transfers between GPUs

• Skeletons implicitly express parallel calculations on GPUs⇒ No explicit coordination of thousands of threads⇒ No explicit handling of the complex memory hierarchies
• Experiments show significant shorter code with competitive performance
• Our implementation of SkelCL is an open source C++ library available at
http://skelcl.uni-muenster.de

S. Gorlatch, M. Steuwer (University of Münster): Towards High-Level Programming for Systems with Many Cores

http://skelcl.uni-muenster.de

