WESTFALISCHE
WILHELMS-UNIVERSITAT

MUNSTER
> Towards High-Level Programming B
for Systems with Many Cores [

Sergei Gorlatch and Michel Steuwer

. Parallel and Distributed Systems Group
W|Ssen.leben Department of Mathematics and Computer Science

WWU Miinster University of Miinster, Germany

-
— — \VESTFALISCHE

Wiuneiws:UnvessiTar Many-Cores and Programming 2

MUNSTER

Many-cores: Multi-core CPUs + GPUs = 10> — 10* — 10° cores

WEE
State-of-the-art programming for many-cores: & /i

OpenCL

Challenges on a system with just one GPU:
coordination of hundreds/thousands of work-items (~ threads)
data transfers to and from GPU
handling of the complex memory hierarchy
Additional challenges for multi-GPU systems:
work balancing to keep all GPUs busy
managing of data transfers between GPUs
Two major drawbacks of the state-of-the-art approaches:

explicit, low-level coding produces lengthy, error-prone programs
missing formal base hinders optimizations through code transformations,
performance prediction, reasoning and verification, etc.

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

— — WESTFALISCHE H
T WILHELMS-UNIVERSITAT SkeICL - OVQFVIeW 3

MUNSTER

Our approach: SkelCL (Skeleton Computing Language) —
a high-level programming model on top of OpenCL

Advantages of building on top of OpenCL:
hardware- and vendor-independent, portable
access to arbitrary OpenCL device, multi-core CPUs, GPUs,
and other accelerators (Cell, FPGA, ...)
Advantages of high-level constructs:
shorter and better structured codes
formal semantics => transformations and performance modeling

Three high-level mechanisms in SkelCL:
Parallel container data types for automatic memory management

Data (re)distributions for automatic data exchange between multiple GPUs

Parallel patterns (skeletons) for expressing parallel computations

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT Container Data Types 4

— MUNSTER

Container data types (Vector and Matrix) make memory management
implicit for both CPU and GPUs in the system

For programmer’s convenience:

Memory is allocated automatically on the GPU
Automatic data transfers between the host and the GPU memory

We use lazy copying to minimize data transfers:
Data is not transfered right away, but rather only when needed
Example: Output vector is used as input to another computation
The output vector's data is not copied to host but resides in device memory
no data transfer needed, which leads to improved performance

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

Wincus. Dnversivi (Re)Distribution Mechanisms | s

For partitioning data across multiple GPUs, there are four data distributions:

CPU CPU CPU CPU
-R—
[]]

0 GPUs 1 0 GPUs 1 0 GPUs 1 0 GPUs 1
(a) single (b) copy (c) block (d) overlap

The distributions are either chosen by the programmer,
or SkelCL automatically chooses default distributions

Distributions for vector shown here, same distributions exist for matrix
Changing distribution at runtime triggers automatic data exchange, e. g.:

vector.setDistribution(Distribution::block);

All required data transfers are performed automatically by SkelCL!

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT Para"el SkEIetonS 6

MUNSTER

The programmer expresses computations using pre-implemented parallel
patterns, a. k. a. algorithmic skeletons (higher-order functions)

Skeletons are customized by application-specific functions

Four basic (Map, Zip, Reduce, Scan) and three specialized (MapOverlap,
Stencil, Allpairs) skeletons are currently provided

reduce

Example: Calculation of the vector dot product expressed with skeletons:

d
dotProd(a,b) = Z ay - by = reduce(+) (zip(-)(a,b))
k=1

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

- SkelCL — First Example

-
— — \VESTFALISCHE

\'(I\V!}.HELMS-UMVERSWET Dot product 7

UNSTER d

Calculation of the dot product: Z ag - by = reduce(—l—)(zip(-)(a,b))
k=1

using namespace skelcl;
float dot_product(const std::vector<float>& a,
const std::vector<float>& b) {
skelcl::init(); // initialize SkelCL

// declare computation by customizing skeletons:
Zip<float> mult(”float f(float =z, float y){ return z*y; }");
Reduce<float> sum_up(”float f(float =z, float y){return z+y;}","0");

// create data vectors:
Vector<float> A(a.begin(), a.end());
Vector<float> B(b.begin(), b.end());

// perform calculation:
Vector<float> C = sum_up(mult(A, B));
return C.front(); // access result

SkelCL: 7 lines of code vs. OpenCL: 68 lines of code (NVIDIA example)

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

Whcums Unvessias Allpairs Skeleton

8
T
o Allpairs computations: 2 5
The same computation is performed for all
possible pairs of vectors from two matrices
o Possible applications: N-body simulation, matrix
multiplication, etc. 0] ®
o Matrix multiplication expressed using allpairs: A ¢
A x B = allpairs(dotProd)(A,BT), where dotProd(a,b Z ay - by

Allpairs<float> mm(
"float funmc(float_matriz_t a, float_matriz_t b) {|
float ¢ = 0.0f;\
for (int ¢ = 0; % < width(a); ++1) {\

¢ t+= getElementFromRow(a, i) * getElementFromCol (b, i); }\
return c; }");

Matrix<float> result = mm(A, B);

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT Optimizing A”pairS 9

MUNSTER

Specialization rules enable optimizations of skeleton implementations

Proposition. If the customizing function of the allpairs skeleton
can be expressed as a seq. composition of zip and reduce, then
an optimized GPU implementation can be automatically derived

Example matrix multiplication: A x B = allpairs(dotProd)(A,BT), where

d
dotProd(a,b) = Z ay - by = reduce(+) (zip(-)(a,b))
k=1

Zip<float> mult("”float f(float =z, float y){return z*y;}");

Reduce<float> sum_up(”float f(float w,float y){return z+y;}", "0");
Allpairs<float> mm(sum_up, mult);
Matrix<float> result = mm(A, B);

Optimized implementation uses additional semantical information of zip and
reduce to make use of the fast local GPU memory

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

L Runtime Results

-
— — \VESTFALISCHE

— Matrix Multiplication 10

MUNSTER

o NVIDIA System using one Tesla GPU with 240 streaming processors

.OpenCL ZOptimized OpenCL ZCUBLAS ZCIBLAS .Generic allpairs skeleton .Allpairs skeleton with zip-reduce

0.125- 08- 6.0 - 50 -

0.100 - 40- 400 -
(%] 0.6 -
g 4.0-
§ 0075- 30- 300
[
7] 0.4-
£ 0.050- 20 - 200 -
© 2.0-
£
= 0.2-
€ 0025- 10 - 100 -
x

0.000 - 0.0- 0.0- 0- 0-

| | | | |
1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192 16384 x 16384
Matrix Size

o Specialized allpairs implementation is = 7 times faster than first
implementation, and close to the performance of BLAS implementations

o cuBLAS implementation is the fastest as it is highly tuned by the vendor,
but restricted to matrix multiplication and to NVIDIA hardware

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

. The Allpairs Skeleton

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT using Multiple GPUS 11

MUNSTER

The allpairs skeleton works for multi-GPU systems as well
B

SkelCL automatically divides the computation mEDE %

among GPUs using its distribution feature [Joru2

By using the semantics of the allpairs skeleton:
Matrix A and C are block distributed,
i.e. row-divided across GPUs
Matrix B is copy distributed, A ¢
i.e. copied entirely to all GPUs 16304 x 16364

The distributions are selected automatically
= No additional lines of code necessary

Good scalability: DDDD

Four GPUs are 3.57 faster than one GPU b ot Gpus

Runtime in Seconds

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

: Programming effort

s ™ WESTFALISCHE
WiunLws:Unversiri Matrix Multiplication

—— MUNSTER

75-
)
°
o
O 50~
—
S)
)
)
£
—o5-

o (—
1
OpenCL Optlmlzed OpenCL BLAS (AMD) BLAS (NVIDIA) SkeICL

[]epu code [Z]cpu code

o SkelCL: 9 lines vs. BLAS: 65 and 81 lines vs. OpenCL 84 and 88 lines

12

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

= Skeletons for Stencil
— — \WESTFALISCHE

WILHELMS-UNIVERSITAT Com putations 13

MUNSTER

Two new skeletons for supporting stencil computations: MapOverlap and Stencil

o Both skeleton are similar to Map: executes given function for every element
o But customizing function can take neighboring elements in into account

o Application developer provides:

o The customizing function
o A description of the stencil shape
o OQut-of-bound handling: accesses returns either neutral or nearest value

o MapOverlap skeleton for simple stencil applications

o Stencil skeleton for more complex iterative stencil applications

SkelCL provides fast multi-GPU ready implementations of these skeletons.

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

- Sobel edge detection with

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT Mapoverlap 14

MUNSTER

e Produces an output image marking all edges in the input image white
o Basic idea: Search for differences in color as compared to neighboring pixels

SkelCL implementation:

MapOverlap<char (char)> m(
"char func(const char* img) {
short h = -1*get(img,-1,-1)
+1%get (img,+1,-1)
-2*get (img, -1, 0)
+2%get (img,+1, 0)
-1*get (img, -1,+1)
+1*xget (img,+1,+1);
short v = //
return sqrt(h*h + v¥v);
}", 1, Padding::NEUTRAL, 0);

fEe \ // execution of the skeleton
Output of the sobel edge Matrix<char> out_img = m(img);
detection

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT
MUNSTER

Sobel edge detection:
SkelCL implementation 15

Application is a perfect fit for the MapOverelap skeleton

Sequential implementation:
(boundary checks omitted)

for (i
for (
h =

out _

= 0; i < width; ++i)

j = 0; j < height; ++j)
-1ximg[i-1]1[j-1]

+1*ximg [i+1][j-1]
-2ximg[i-11[F 1

+2*ximg [i+1]1[j]
-1ximg[i-11[j+1]

+1*ximg [i+11[j+11;

/7.

img[il[jl=sqrt (h*h+v*v);

SkelCL implementation:

MapOverlap<char (char)> m(
"char func(const char* img) {
short h = -1*get(img,-1,-1)
+1*xget (img,+1,-1)
-2+get (img, -1, 0)
+2xget (img,+1, 0)
-1*get (img, -1,+1)
+t1*get (img,+1,+1);
short v = //
return sqrt(h*h + v*v);
}", 1, Padding::NEUTRAL, 0);

// execution of the skeleton
Matrix<char> out_img = m(img);

o SkelCL implementation is very similar to the sequential version (good!)

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

- Sobel edge detection:

-
— — \VESTFALISCHE

Wineuws-Unversivin OpenCL implementation 16

o OpenCL implementation requires additional low-level code, like:
o Knowledge and use of OpenCL keywords and functions
o Boundary checks
o Pointer arithmetic

__kernel void sobel_kernel(__global const char* img,
__global char* out_img,
int w, int h) {

size_t i = get_global_id (0); size_t j = get_global_id(1);

if(i < w && j < h) { // perform boundary checks manually
char ul = (j-1 > 0 && i-1 > 0) ? img[((j-1)*w)+(i-1)] : O;

char um = (j-1 > 0) 7 img[((j-1)*w)+(i+0)] : 03
// ... 7 more of these lines
out_img[j * w + i] = computeSobel(ul, um, ...,); 1} }

OpenCL requires almost five times more lines of code than SkelCL (19 vs. 4)

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

wwansuwvesis Mlore complex stencils with Stencil | 17

— MUNSTER

Stencil <char(char)> heatSim(
o lterative applications (e.g. "char func(const char#* in) {

simulations) can be performed char 1t = get(in, -1, -1);

. . char lm = get(in, -1, 0);
using the Stencil skeleton char 1b = get(in, -1, +1)

o Non-square stencil shapes can return computeHeat (lt,1lm,1b); }",

be expressed StencilShape(1, 0, 1, 1),
P Padding::NEUTRAL, 255);

o Example: Simulation of heat output = heatSim (100, input);
transfer
Stencil<Pixel (Pixel)> gauss (...);
Stencil <Pixel (Pixel)> sobel(...);
Stencil<Pixel (Pixel)> nms(...);

e Often appllcatlons consist of Stencil <Pixel (Pixel)> threshold(..);

multiple stencils

StencilSequence<Pixel (Pixel)> canny (
gauss, sobel, nms, threshold);

output = canny (1, input);

o Example: Canny algorithm for
more advanced edge detection

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WILHELMS-UNIVERSITAT M u Iti— G P U SySte mS 18

MUNSTER

Automatic support for multi-GPU Systems

Using the overlap distribution elements on the "border" are stored on 2 GPUs
Data exchange is necessary between iterations

Currently implemented by copying data to the CPU and back to the GPUs

/7.
Device 0 \ >< —/— Device 0
77, / /1 /7 —.
Device 1 \ NNNN >< Ll Device 1
NN\ NN\
Host
Device 2 Device 2

o Everything is done automatically. No change of source code necessary!

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

Time in Seconds

-
— — \VESTFALISCHE

1
0

WILHELMS-UNIVERSITAT
MUNSTER

o Both skeletons automatically use fast local memory
o Implementation of the MapOverlap skeleton avoids some out-of-bound

accesses by extending the input data

o For Stencil skeleton all out-of-bound handling is done on GPU to support

sequences of Stencils (with different handling modes)

Performance for Gaussian Blur:

M OpenCL Global Memory OpenCL Local Memory

M MapOverlap M Stencil
[
[|
Ili
1 2 3 4 5 6 7 8 9 10

Size of Stencil Shape

Speedup

4

Implementation & Performance

4 Devices

3 Devices

1 Device

L~

128345678 91011121314151617 181920

Size of Stencil Shape

19

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

- Application: Computer

-
— — \VESTFALISCHE

\'(AVIUL":'ISETI.:I;S-UNIVERSITKT Tomography 20

Application study: List-Mode Ordered Subset
Expectation Maximization (LM OSEM)

LM OSEM is a time-intensive image reconstruction
algorithm, takes hours on a PC = not practical

3D-images are reconstructed from sets of events recorded by
a scanner; events are split into subsets, processed iteratively

In every iteration a subset is processed in two steps:

Subset's events (S) are used to process an error image (c)
The error image is used to update a reconstruction image (f)

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

Wilneuws Unoversivie Parallelizing LM OSEM 21

MUNSTER

e The two computational steps require different parallelization approaches:
o Step 1: divide subset’s events (S) across processing units, every processing
unit requires copy of reconstruction image (f) to compute an error image (c)

o Step 2: divide error image (c) and reconstruction image (f) to refine the
reconstruction image

=
j)
o
]
jo]
=9}
o
—
j=)
=9}
]
° In Skech Upload Redistribution Download

o S, f, and c are expressed as SkelCL vectors
o Step 1 and Step 2 are expressed using algorithmic skeletons
o Distribution and redistribution of data is easily expressed in SkelCL

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

WiuneLms.Unvessinar LM OSEM Results 22

—— MUNSTER

400 -

300 -

GPU part 2- SkelCL
200~ CPU part OpenCL
1-
100-
0- 0-
' '

Lines of code
Runtime in seconds

' '
SkelCL OpenCL 1 2 4
Number of GPUs

o Lines of code for the CPU part was drastically reduced: from 243 to only 32
o SkelCL only introduces a moderate overhead of less than 5%

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

-
— — \VESTFALISCHE

Wiseuws Unersivin Conclusion 23
SkelCL is a high-level programming model for (multi-)GPU programming
Three high-level features: Container data types; Distributions; Skeletons
Container data types implicitly transfer data to and from the devices
= No explicit data transfers to and from GPUs
Distributions simplify parallelization across multiple GPUs
= No explicit managing of data transfers between GPUs
Skeletons implicitly express parallel calculations on GPUs
= No explicit coordination of thousands of threads
= No explicit handling of the complex memory hierarchies
Experiments show significant shorter code with competitive performance

Our implementation of SkelCL is an open source C++ library available at
http://skelcl.uni-muenster.de

S. Gorlatch, M. Steuwer (University of Miinster): Towards High-Level Programming for Systems with Many Cores

http://skelcl.uni-muenster.de

