
Towards Exascale Programming Models

HPC 2014
Cetraro

Erwin Laure, Stefano Markidis, KTH

Exascale Programming Models
•  With the evolution of HPC architecture towards excascale, new

approaches for programming these machines need to be found -
EPiGRAM focuses on exploring programming models for the
exascale era.

•  Intense discussion whether existing models can be improved to
exascale or whether disruptive changes are needed.

What is used today?

© CRESTA Consortium Partners 2011 Page 11 of 55

Figure 1: Application base languages. Reproduced from [7].

Each of the major European HPC service providers was surveyed on applications
accounting for greater than 5% of system utilisation. Information was gathered relating
to a total of 57 distinct applications. Figure 1 shows base language utilisation (noting
that the total number is higher than 57 since some applications use more than one
base language). In can be seen that Fortran, C and C++ account for the vast majority
of total usage, with Fortran (Fortran 90/95, Fortran 77) being the most popular, followed
by C (C90 + C99) and then by C++. The only other reported language is Python, used
in a few applications.

Figure 2: Application parallelisation methods. Reproduced from [7].

Figure 2 shows the breakdown by parallelisation method. It can be seen that the vast
majority of applications used MPI: some of these in combination with OpenMP. Sole
OpenMP usage was small (which is not surprising since the systems involved are
typically used for relatively large parallel jobs, and OpenMP is suitable for intra-node
parallelisation only). The only other reported parallelisation method was that one
application used Posix threads (combined with MPI).

A comparison with 2008 PRACE survey shows that there has been an increase in the
proportion of the applications using C or C++ compared to those using Fortran. The
proportion of applications using hybrid MPI and shared memory has increased also
compared to the 2008 PRACE survey. The longevity of parallel HPC simulation codes
makes it unlikely that there will be major shifts in these patterns over the next five to ten
years.

© CRESTA Consortium Partners 2011 Page 12 of 55

Therefore, the results of this survey indicate that the vast majority of applications use
the traditional programming methods and models described in the preceding section.

3.2.2 CRESTA%CoDDesign%Applications%
In this section, we briefly summarise the languages and parallelisation methods used in
the CRESTA co-design applications. As for the PRACE applications, all use the
“traditional” programming models already described. Further details on this may be
found in the report accompanying CRESTA Deliverable D2.6.1 “CRESTA benchmark
suite”.

3.2.2.1 GROMACS*
GROMACS is written in C and C++, with optional inline x86 assembly code and/or
CUDA. Parallelism is a hybrid of MPI and OpenMP.

3.2.2.2 ELMFIRE*
ELMFIRE is mainly written using Fortran90, with some C used for auxiliary functions.
The code is single-threaded, with pure MPI parallelism.

3.2.2.3 HemeLB*
HemeLB is written in C++ with parallelism via MPI. A hybrid version, mixing OpenMP
with MPI, is expected in the early part of the CRESTA project.

3.2.2.4 IFS*
IFS combines Fortran (Fortran90 and Fortran95) with C. The parallelism is
implemented using a hybrid of MPI and OpenMP.

3.2.2.5 OpenFOAM*
OpenFOAM is implemented using C++ with parallelism via MPI only, although some
work has been done on hydridising certain solvers using OpenMP.

3.2.2.6 Nek5000*
Nek5000 is written using FORTRAN77 and C. Parallelism is via MPI only.

3.3 Suitability!for!Future!Architectures!

3.3.1 Increasing%Numbers%of%Cores%
The PRACE survey discussed in Section 3.2.1 contained another interesting finding.

Figure 3: Distribution of total utilisation, in terms of number of cores used per application.

Reproduced from [7].

Figure 3 shows a profile of application sizes, in terms of numbers of cores used; 84%
of the applications use less than 8192 cores. The peak performance of today’s

© CRESTA Consortium Partners 2011 Page 11 of 55

Figure 1: Application base languages. Reproduced from [7].

Each of the major European HPC service providers was surveyed on applications
accounting for greater than 5% of system utilisation. Information was gathered relating
to a total of 57 distinct applications. Figure 1 shows base language utilisation (noting
that the total number is higher than 57 since some applications use more than one
base language). In can be seen that Fortran, C and C++ account for the vast majority
of total usage, with Fortran (Fortran 90/95, Fortran 77) being the most popular, followed
by C (C90 + C99) and then by C++. The only other reported language is Python, used
in a few applications.

Figure 2: Application parallelisation methods. Reproduced from [7].

Figure 2 shows the breakdown by parallelisation method. It can be seen that the vast
majority of applications used MPI: some of these in combination with OpenMP. Sole
OpenMP usage was small (which is not surprising since the systems involved are
typically used for relatively large parallel jobs, and OpenMP is suitable for intra-node
parallelisation only). The only other reported parallelisation method was that one
application used Posix threads (combined with MPI).

A comparison with 2008 PRACE survey shows that there has been an increase in the
proportion of the applications using C or C++ compared to those using Fortran. The
proportion of applications using hybrid MPI and shared memory has increased also
compared to the 2008 PRACE survey. The longevity of parallel HPC simulation codes
makes it unlikely that there will be major shifts in these patterns over the next five to ten
years.

Figures from a study of the 57 leading
applications used in Europe by the
PRACE Project

epcc|cresta
Visual Identity Designs

CREST

CRESTA experiences

4

IFS
Numerical weather prediction
Timely and accurate weather
forecasts can save lives
Simulating the trajectory of
hurricane Sandy

Acceleration
Task-graph based
parallelization
New communication models

24th June 2014 ISC 2014

CAF to overlap
communication

with
computation

0

100

200

300

400

500

600

700

800

900

0 20000 40000 60000 80000 100000 120000

Fo
re

ca
st

 D
ay

s
/ D

ay

Number of Cores

T2047L137 IFS forecast model performance
RAPS12 (CY37R3, on HECToR), RAPS13 (CY38R2, on

TITAN)

TITAN RAPS13 CRESTA OCT-13

TITAN RAPS13 CRESTA JUN-13

HECToR RAPS12 CRESTA

HECToR RAPS12 Original

EPiGRAM believes in the incremental approach
and that the most promising parallel programming
environments can be scaled to exascale:

Message Passing and PGAS

A Window of Opportunity
•  MPI 3.0 is a major step forward but still not ready for exascale
•  By extending and improving GPI to exascale we will consolidate

the role of GPI and establish it as the European PGAS approach.
•  EPiGRAM can complement the European CRESTA, DEEP, and

Mont-Blanc exascale projects.
–  by exploring additional innovative PGAS approaches that go

well beyond those considered in the current CRESTA project
–  by investigating efficient MP mechanisms that might useful for

hybrid Cluster-Booster architecture in DEEP
–  by studying and analyzing one-sided communication

approaches for diverse memory spaces such as the one in
hybrid ARM-GPU systems in Mont-Blanc.

Key Objectives of the Project
•  Address the scalability (performance and

memory consumption) problem for MP and
PGAS models.

•  Propose GPI as the European PGAS
approach to exascale.

•  Design an hybrid MP-PGAS programming
model that combines the best features of the
two approaches.

•  Contribute to standardization efforts
•  Prepare two applications to exascale by

redesigning and implementing their
communications kernels.

Key Players and Their Main Focus
•  KTH: management (WP1),

applications (WP6)
•  TUW: exascale MP (WP2)
•  FRAUNHOFER: exascale

PGAS (WP3)
•  CRAY UK: programming

models for diverse memory
spaces (WP3)

•  EPCC: PGAS-based MPI
(WP4)

•  External Contributor:
UNIVERSITY OF ILLINOIS:
exascale MP (WP2)

Exascale Message Passing
1.  Dealing with limited and slower memory:

–  in-depth analysis of MPI derived datatype mechanism for
saving copy-operations;

–  analysis of MPI collective interface specification with
suggestions for improvement

2.  Collective communication at scale:
–  proposal for specification of homogeneous stencils, towards

improved (homogeneous, regular) sparse collectives
3.  Other issues to be addressed:

–  collective communication in sparse networks
–  Multi-threaded MPI
–  MPI with other models (threads, PGAS, extended message-

passing models)

MPI derived datatype mechanism

MPI derived datatype mechanism (functionality for defining
application-specific, structured, units of communication) enables

Zero-copy implementation:
•  No explicit pack/unpack and other process local data

reorganization.
•  All necessary (process local) data movement implicit by

communication operations.

Higher-level, descriptive advantages, can lead to genuine
performance improvements

©Jesper Larsson Träff ICS 10-13.6.2014

Implementing a Classic:
Zero-copy all-to-all communication

with MPI derived datatypes

Jesper Larsson Träff, Antoine Rougier, Sascha Hunold
traff@par.tuwien.ac.at

Vienna University of Technology (TU Wien)
Faculty of Informatics

Institute for Information Systems
Research Group Parallel Computing

©Jesper Larsson Träff ICS 10-13.6.2014

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby: Efficient
Algorithms for All-to-All Communications in Multiport Message-Passing
Systems. IEEE Trans. Parallel Distrib. Syst. 8(11): 1143-1156 (1997)

Case study: Zero-copy implementation of a classic, log-round alltoall
algorithm

Standard formulation:
Step 1: process-local rotate of data elements
Step 2: log rounds of communication, roughly p/2 (non-contiguous)
elements grouped together and send/received per round
Step 3: process-local reverse and rotate of elements

We propose:
• Algorithmic change to get rid of Step 3
• Using per-element double-buffering and datatypes to achieve zero-
copy implementation

©Jesper Larsson Träff ICS 10-13.6.2014

Useful derived datatype, not in MPI

Circular vector: derived, derived datatype

Can also be implemented using existing MPI constructors (struct
of vector and contig); but quite tedious, with high overhead, and
possibly more efficiently handled as native type

stride

blocksize Start offset

Total size and element bound

©Jesper Larsson Träff ICS 10-13.6.2014

for (k=1; k<p; k<<1) { // communication round
 for (j=k; j<p; j++) {
 // analyze bits of j
 ..
 b++; // number of blocks to send/receive
 }
 MPI_Type_create_struct(b,…,&sendblocktype);
 MPI_Type_create_struct(b,…,&recvblocktype);
 MPI_Type_commit(&sendblocktype);
 MPI_Type_commit(&recvblocktype);

 MPI_Sendrecv(MPI_BOTTOM,1,sendblocktype,
 MPI_BOTTOM,1,recvblocktype,…);
 MPI_Type_free(&sendblocktype);
 MPI_Type_free(&recvblocktype);
}

The Zero-copy implementation

©Jesper Larsson Träff ICS 10-13.6.2014

Jupiter, 36x1 MPI processes (small problems)

• BasicBruck: Bounded vector better than indexed-block
• ModBruck: Circular vector expensive

zero

basic

©Jesper Larsson Träff ICS 10-13.6.2014

for (k=1; k<p; k<<1) { // communication round
 for (j=k; j<p; j++) {
 // analyze bits of j
 ..
 b++; // number of blocks to send/receive
 }
 MPI_Type_create_struct(b,…,&sendblocktype);
 MPI_Type_create_struct(b,…,&recvblocktype);
 MPI_Type_commit(&sendblocktype);
 MPI_Type_commit(&recvblocktype);

 MPI_Sendrecv(MPI_BOTTOM,1,sendblocktype,
 MPI_BOTTOM,1,recvblocktype,…);
 MPI_Type_free(&sendblocktype);
 MPI_Type_free(&recvblocktype);
}

The Zero-copy implementation

Per round overhead

©Jesper Larsson Träff ICS 10-13.6.2014

Proposal, not in MPI: persistent collective operation

Analogous to persistent point-to-point operations (in MPI)

MPI_Alltoall_init(sendbuf,sendcount,sendtype,

recvbuf,recvcount,recvtype,comm, &req);

precomputes all datatypes, creates communication schedule (log
p round loop), and

MPI_Start(&req);

initiates and completes next alltoall operation (with given
parameters)

©Jesper Larsson Träff ICS 10-13.6.2014

Algorithmic
improvement (change
of element order and
communication
direction)

Zero-copy
Bruck: Per
element
alternate
buffering with
datatypes

Basic Bruck
algorithm with
datatypes

Note: Also for small problems, where the algorithm is competitive, we
have a statistically significant improvement

Other zero-copy investigations
1.  Hierarchical alltoall algorithms – use new MPI 3.0 functionality,

competitive performance, complex reorderings by datatypes
and MPI_Alltoallw. We identify a lack of functionality in
MPI_Gather/Scatter interfaces

2.  Hierarchical gather/scatter/allgather algorithms: we
conclusively show that zero-copy implementations are not
possible. A change of interface specification is elaborated on
(perhaps for discussion with MPI Forum?), a collection of new
datatype constructors discussed

3.  Datatype normalization: Complexity issues have never been
formally studied. We show that the problem can be solved
optimally in polynomial time when only vector and index-
block constructors are allowed

Exascale PGAS

•  Objectives:
– To investigate current limitations of traditional

PGAS.
– To propose concrete solutions to current

PGAS limitations.
– To increase scalability of collective operations

and synchronization in GPI.
– To support fault-tolerance in GPI.
– Exploitation of diverse and hierarchical

memory spaces in PGAS.

Global Address Space API: GPI
Intranode communication API

•  GPI: Global Address Space API
•  RDMA over IB, RoCE, Cray
•  Low Latency & Wire-speed
•  C/C++, Fortan
•  Thread safe

•  Intel Xeon Phi, GPUs

•  MPI Interoperability

•  Asynchronous communication between segments, one-sided, non-blocking
•  Zero-copy, no CPU cycles for communication
•  Support for fault tolerance by a timeout mechanism
•  (Sparse) collectives with time based blocking
•  fast remote notification

Overview over the relevant PGAS software stack

Open-‐
SHMEM

PGAS	 run0me	 (e.g.	 GASNet)

Chapel CAF UPC
MPI-‐
RMA

GA

ARMC I	
and	 MP
	

GPI
	 Compiler

X10

Network

	

PGAS approaches can be roughly divided into:
•  Languages:

•  UPC which extends the C language, CAF which extends Fortran,
Chapel and X10 as standalone languages)
•  Easy to switch to, however a lot of pressure on the compiler

•  APIs (GPI, GA, ARMCI, OpenShmem):

•  Explicitly implement the communication between the nodes
•  To be used by application developers (like GPI) or by tool developers
(like ARMCI)

Gap Analysis for Exascale

	

Point to check Result

Heterogeneous hardware fine

Data Types fine

Fault Tolerance Will become more important at Exascale, minimal
requirements need to be checked

Migration Paths from MPI
to PGAS

MPI end-points proposal will help future
interoperability to map PGAS with MPI processing
elements

Isolation of Libraries Resources shared between main application and
a library make isolation difficult

Locality Topology information needs to be incorporated in
PGAS approaches to quantify a distance to data

PGAS-based MPI

•  Objectives:
–  Implement and evaluate efficient message

passing libraries on top of RDMA operations
–  Implement and evaluate collective operations

on top of RDMA operations
– Prototype implementation of MPI endpoints

proposal
– Develop recommendations for MPI to allow

efficient implementation on top of RDMA
– Develop recommendations for RDMA

hardware

Enabling MPI Interoperability Through
Flexible Communication Endpoints

James	 Dinan,	 Pavan	 Balaji,	 David	 Goodell,	
Douglas	 Miller,	 Marc	 Snir,	 and	 Rajeev	 Thakur	

Euro-‐MPI	 2013;	 Courtesy	 Jim	 Dinan	 	

Mapping of Ranks to Processes in MPI

§  MPI	 provides	 a	 1-‐to-‐1	 mapping	 of	 ranks	 to	 processes	
§  This	 was	 good	 in	 the	 past,	 but	 usage	 models	 have	 evolved	

–  Programmers	 use	 many-‐to-‐one	 mapping	 of	 threads	 to	 processes	
•  E.g.	 Hybrid	 parallel	 programming	 with	 OpenMP/threads	

–  Other	 programming	 models	 also	 use	 many-‐to-‐one	 mapping	
•  Interoperability	 is	 a	 key	 objec0ve,	 e.g.	 with	 Charm++,	 etc…	

26	

Rank	

T	 T	 T	

Conven0onal	 Communicator	

Process	

Rank	

T	 T	

Process	

…	

Current Approaches to Hybrid MPI+Threads

§  MPI	 message	 matching	 space:	 <communicator,	 sender,	 tag>	
§  Two	 approaches	 to	 using	 THREAD_MULTIPLE	

1.  Match	 specific	 thread	 using	 the	 tag:	
–  Par00on	 the	 tag	 space	 to	 address	 individual	 threads	
–  Limita0ons:	

•  Collec0ves	 –	 Mul0ple	 threads	 at	 a	 process	 can’t	 par0cipate	 concurrently	
•  Wildcards	 –	 Mul0ple	 threads	 concurrently	 requires	 care	

2.  Match	 specific	 thread	 using	 the	 communicator:	
–  Split	 threads	 across	 different	 communicators	 (e.g.	 Dup	 and	 assign)	
–  Can	 use	 wildcards	 and	 collec0ves	
–  However,	 limits	 connec0vity	 of	 threads	 with	 each	 other	

27	

Impact of Light Cores and Threads on Message Rate

§  Shamelessly	 stolen	 from	 Brian	 Barref,	 et	 al.	 [EuroMPI	 ‘13]	
§  Threads	 sharing	 a	 rank	 increase	 posted	 receive	 queue	 depth	 (x-‐axis)	
§  Solu0on:	 More	 ranks!	

–  Adding	 more	 MPI	 processes	 fragments	 the	 node	
–  Can’t	 do	 shared	 memory	 programming	 across	 the	 whole	 node	

28	

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
 R

a
te

 (
m

e
ss

a
g
e
s/

se
co

n
d
)

Queue Depth (entries)

Ivy Bridge
Xeon Phi (code named Knights Corner)

Arm Cortex-A9

(a) Posted Receive Queue

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
 R

a
te

 (
m

e
ss

a
g
e
s/

se
co

n
d
)

Queue Depth (entries)

Ivy Bridge
Xeon Phi (code named Knights Corner)

Arm Cortex-A9

(b) Unexpected Message Queue

Figure 1: E↵ect of posted receive queue and unexpected message queue length on single-direction message rate.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
 R

a
te

 R
e
la

tiv
e
 t
o
 0

-e
n
tr

y
Q

u
e
u
e

Queue Depth (entries)

Ivy Bridge
Xeon Phi (code named Knights Corner)

Arm Cortex-A9

(a) Posted Receive Queue

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 200 400 600 800 1000 1200

M
e
ss

a
g
e
 R

a
te

 R
e
la

tiv
e
 t
o
 0

-e
n
tr

y
Q

u
e
u
e

Queue Depth (entries)

Ivy Bridge
Xeon Phi (code named Knights Corner)

Arm Cortex-A9

(b) Unexpected Message Queue

Figure 2: E↵ect of posted receive queue and unexpected message queue length on single-direction message rate, normalized
to a queue depth of 0.

are paired o↵ and communicate bidirectionally. The Sandy
Bridge and Ivy Bridge results show high initial message
rates, but tail o↵ rapidly, while the Knights Corner shows a
relatively steady performance curve as the number of pairs
communicating is increased. We believe that this is due to
memory bandwidth constraints in the Sandy Bridge and Ivy
Bridge processors relative to their peak performance. This
is born out by the comparison of the Sandy Bridge and Ivy
Bridge results. While the Ivy Bridge is a more advanced
core with higher peak message rate, the Sandy Bridge’s ex-
tra memory controllers appear to be the reason that it can
sustain higher message rates as more peers are added. When
available, we would expect the Ivy Bridge E-series proces-
sors to show a similar ability to sustain higher message rates
as peer count is increased.

The pre-post tests from Figure 4 post a large number of
receives, equally distributed by the number of peers in the
job then send an equal number of messages to all peers in
the job. The messages are all pre-posted and use an un-
timed barrier to ensure that all messages are expected on

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 5 10 15 20 25 30 35

M
e
ss

a
g
e
 R

a
te

 (
m

e
ss

a
g
e
s/

se
co

n
d
)

Peer Count

Xeon Phi (code named Knights Corner) Pair-based
Xeon Phi (code named Knights Corner) Pre-post

Sandy Bridge Pair-based
Sandy Bridge Pre-post
Ivy Bridge Pair-based

Ivy Bridge Pre-post

Figure 4: E↵ect of peer count on message rate.

70 The Impact of Hybrid-Core Processors on MPI Message Rate

Endpoints: Flexible Mapping of Ranks to Processes

§  Provide	 a	 many-‐to-‐one	 mapping	 of	 ranks	 to	 processes	
–  Allows	 threads	 to	 act	 as	 first-‐class	 par0cipants	 in	 MPI	 opera0ons	
–  Improve	 programmability	 of	 MPI	 +	 node-‐level	 and	 MPI	 +	 system-‐level	 models	
–  Poten0al	 for	 improving	 performance	 of	 hybrid	 MPI	 +	 X	

§  A	 rank	 represents	 a	 communica0on	 “endpoint”	
–  Set	 of	 resources	 that	 supports	 the	 independent	 execu0on	 of	 MPI	 communica0ons	

§  Note:	 Figure	 demonstrates	 many	 usages,	 some	 may	 impact	 performance	

29	

Rank	

T	 T	 T	

Endpoints	 Communicator	

Process	

Rank	

T	 T	

Process	

…	 Rank	 Rank	 Rank	 Rank	

T	 T	

Process	

Putting It All Together: Proposed Interface

int	 MPI_Comm_create_endpoints(
	 MPI_Comm	 parent_comm,	
	 int	 my_num_ep,	
	 MPI_Info	 info,	
	 MPI_Comm	 *out_comm_hdls[])	

	
§  Each	 rank	 in	 parent_comm	 gets	 my_num_ep	 ranks	 in	

out_comm	
–  My_num_ep	 can	 be	 different	 at	 each	 process	
–  Rank	 order:	 process	 0’s	 ranks,	 process	 1’s	 ranks,	 etc.	

§  Output	 is	 an	 array	 of	 communicator	 handles	
–  ith	 handle	 corresponds	 to	 ith	 endpoint	 create	 by	 parent	 process	
–  To	 use	 that	 endpoint,	 use	 the	 corresponding	 handle	

30	

0 2 3 4

1 20

1

Usage Models are Many…

§  Intranode	 parallel	 programming	 with	 MPI	
–  Spawn	 endpoints	 off	 MPI_COMM_SELF	

§  Allow	 true	 thread	 mul0ple,	 with	 each	 thread	 addressable	
–  Spawn	 endpoints	 off	 MPI_COMM_WORLD	

	
§  Obtain	 befer	 performance	

–  Par00on	 threads	 into	 groups	 and	 assign	 a	 rank	 to	 each	 group	
–  Performance	 benefits	 without	 par00oning	 shared	 memory	

programming	 model	

§  Interoperability	
–  Examples:	 OpenMP	 and	 UPC	

31	

EPiGRAM Contributions

•  Context id allocation algorithm
– Multiple instantiations of the algorithm with

identical answer
–  influence the implementations in both MPICH

and OpenMPI
•  Alpha prototype implementation in

McMPI
•  Beta prototype implementation in T3DMPI
•  Participation in the Hybrid working group

Applications

•  Objectives:
– Use of the exascale MP, PGAS and PGAS-

based MPI software in two real-world
applications: Nek5000, iPIC3D

– Analyze the performance of newly developed
communication kernels in Nek5000 and iPIC3D

– Provide feed-back and guidance to the
development of exascale programming
models

EPiGRAM Applications
•  Two real-world application with exascale needs:

–  Nek5000 (https://nek5000.mcs.anl.gov/):
•  CFD code for simulation of nuclear reactors and fluid turbulence
•  F77 (95%) C (5%) and MPI
•  Regular communication pattern involving neighbor processes

–  iPIC3D (https://github.com/CmPA/iPic3D/):
•  Particle code for simulation of interaction of solar wind with Earth’s

magnetosphere (space weather)
•  C++ and MPI
•  Regular communication pattern involving neighbor processes

•  Initial work:
–  Identifying possible improvement in MPI communication kernels

•  Use of non-blocking CG and GMRes linear solvers. This requires redesign of
solvers.

•  Use of sparse-collective to replace neighbor communication (might have
improvement of message scheduling).

–  Porting applications to GPI
•  Identify interoperability issues between MPI and GPI.
•  Performance improvement with GPI One-sided.

Thinking Exascale
•  We use the LogGOPSim simulator (1),

based on the LOGGops model, to:
–  Simulate the EPiGRAM applications on

million nodes.
–  Assess the dependency of communication

kernel performance on network bandwidth
and latency.

–  Assess the importance of noise on
applications communication kernel

•  We consider additional data-driven
applications with irregular application
patterns and : Graph500 (Graph
construction + Breadth-first search),
mpiBLAST (nucleotide or proteing
alignment search)

(1) Hoefler, Torsten, Timo Schneider, and
Andrew Lumsdaine. "LogGOPSim:
simulating large-scale applications in the
LogGOPS model." In Proceedings of the
19th ACM International Symposium on High
Performance Distributed Computing, pp.
597-604. ACM, 2010.

Summary

•  MPI and PGAS will likely be important
programming models on exascale systems

•  Scalability and performance issues need to
be resolved

•  EPiGRAM tackles some of the important
issues (collectives, data types,
interoperability)

ExaMPI Workshop @ SC14
•  Explore potential and issues of MPI for the

exascale era
•  Keynotes and invited talks from world-

leading experts
•  Explore hybrid systems

– Booster, GPU, MIC, PGAS

•  http://www.epigram-project.eu/exampi14/

