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Exascale Programming Models
•  With the evolution of HPC architecture towards excascale, new 

approaches for programming these machines need to be found - 
EPiGRAM focuses on  exploring programming models for the 
exascale era.

•  Intense discussion whether existing models can be improved to 
exascale or whether disruptive changes are needed.



What is used today?
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Figure 1: Application base languages. Reproduced from [7]. 

Each of the major European HPC service providers was surveyed on applications 
accounting for greater than 5% of system utilisation. Information was gathered relating 
to a total of 57 distinct applications. Figure 1 shows base language utilisation (noting 
that the total number is higher than 57 since some applications use more than one 
base language). In can be seen that Fortran, C and C++ account for the vast majority 
of total usage, with Fortran (Fortran 90/95, Fortran 77) being the most popular, followed 
by C (C90 + C99) and then by C++. The only other reported language is Python, used 
in a few applications. 

 

 
 

Figure 2: Application parallelisation methods. Reproduced from [7]. 

Figure 2 shows the breakdown by parallelisation method. It can be seen that the vast 
majority of applications used MPI: some of these in combination with OpenMP. Sole 
OpenMP usage was small (which is not surprising since the systems involved are 
typically used for relatively large parallel jobs, and OpenMP is suitable for intra-node 
parallelisation only). The only other reported parallelisation method was that one 
application used Posix threads (combined with MPI). 

A comparison with 2008 PRACE survey shows that there has been an increase in the 
proportion of the applications using C or C++ compared to those using Fortran. The 
proportion of applications using hybrid MPI and shared memory has increased also 
compared to the 2008 PRACE survey. The longevity of parallel HPC simulation codes 
makes it unlikely that there will be major shifts in these patterns over the next five to ten 
years. 
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Therefore, the results of this survey indicate that the vast majority of applications use 
the traditional programming methods and models described in the preceding section.  

3.2.2 CRESTA%CoDDesign%Applications%
In this section, we briefly summarise the languages and parallelisation methods used in 
the CRESTA co-design applications. As for the PRACE applications, all use the 
“traditional” programming models already described. Further details on this may be 
found in the report accompanying CRESTA Deliverable D2.6.1 “CRESTA benchmark 
suite”. 

3.2.2.1 GROMACS*
GROMACS is written in C and C++, with optional inline x86 assembly code and/or 
CUDA. Parallelism is a hybrid of MPI and OpenMP. 

3.2.2.2 ELMFIRE*
ELMFIRE is mainly written using Fortran90, with some C used for auxiliary functions. 
The code is single-threaded, with pure MPI parallelism. 

3.2.2.3 HemeLB*
HemeLB is written in C++ with parallelism via MPI. A hybrid version, mixing OpenMP 
with MPI, is expected in the early part of the CRESTA project. 

3.2.2.4 IFS*
IFS combines Fortran (Fortran90 and Fortran95) with C. The parallelism is 
implemented using a hybrid of MPI and OpenMP. 

3.2.2.5 OpenFOAM*
OpenFOAM is implemented using C++ with parallelism via MPI only, although some 
work has been done on hydridising certain solvers using OpenMP. 

3.2.2.6 Nek5000*
Nek5000 is written using FORTRAN77 and C. Parallelism is via MPI only. 

3.3 Suitability!for!Future!Architectures!

3.3.1 Increasing%Numbers%of%Cores%
The PRACE survey discussed in Section 3.2.1 contained another interesting finding. 

 
Figure 3: Distribution of total utilisation, in terms of number of cores used per application.  

Reproduced from [7]. 

Figure 3 shows a profile of application sizes, in terms of numbers of cores used; 84% 
of the applications use less than 8192 cores.  The peak performance of today’s 
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Figures from a study of  the 57 leading 
applications used in Europe by the 
PRACE Project 



epcc|cresta
Visual Identity Designs

CREST

CRESTA experiences 

  

4 

IFS 
Numerical weather prediction 
Timely and accurate weather 
forecasts can save lives  
Simulating the trajectory of 
hurricane Sandy 
 
Acceleration 
Task-graph based 
parallelization  
New communication models 
 

24th June 2014 ISC 2014 

CAF to overlap 
communication 

with 
computation 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

0 20000 40000 60000 80000 100000 120000 

Fo
re

ca
st

 D
ay

s 
/ D

ay
 

Number of Cores 

T2047L137 IFS forecast model performance 
RAPS12 (CY37R3, on HECToR), RAPS13 (CY38R2, on 

TITAN) 
 

TITAN RAPS13 CRESTA OCT-13 

TITAN RAPS13 CRESTA JUN-13 

HECToR RAPS12 CRESTA 

HECToR RAPS12 Original 



EPiGRAM believes in the incremental approach 
and that the most promising parallel programming 
environments can be scaled to exascale:

Message Passing and PGAS



A Window of Opportunity
•  MPI 3.0 is a major step forward but still not ready for exascale
•  By extending and improving GPI to exascale we will consolidate 

the role of GPI and establish it as the European PGAS approach.
•  EPiGRAM can complement the European CRESTA, DEEP, and 

Mont-Blanc exascale projects. 
–  by exploring additional innovative PGAS approaches that go 

well beyond those considered in the current CRESTA project
–  by investigating efficient MP mechanisms that might useful for 

hybrid Cluster-Booster architecture in DEEP
–  by studying and analyzing one-sided communication 

approaches for diverse memory spaces such as the one in 
hybrid ARM-GPU systems in Mont-Blanc.



Key Objectives of the Project
•  Address the scalability (performance and 

memory consumption) problem for MP and 
PGAS models.

•  Propose GPI as the European PGAS 
approach to exascale.

•  Design an hybrid MP-PGAS programming 
model that combines the best features of the 
two approaches.

•  Contribute to standardization efforts
•  Prepare two applications to exascale by 

redesigning and implementing their 
communications kernels.



Key Players and Their Main Focus 
•  KTH: management (WP1), 

applications (WP6)
•  TUW: exascale MP (WP2)
•  FRAUNHOFER: exascale 

PGAS (WP3)
•  CRAY UK: programming 

models for diverse memory 
spaces (WP3)

•  EPCC:  PGAS-based MPI 
(WP4)

•  External Contributor: 
UNIVERSITY OF ILLINOIS: 
exascale MP (WP2)





Exascale Message Passing  
1.  Dealing with limited and slower memory: 

–  in-depth analysis of MPI derived datatype mechanism for 
saving copy-operations; 

–  analysis of MPI collective interface specification with 
suggestions for improvement

2.  Collective communication at scale: 
–  proposal for specification of homogeneous stencils, towards 

improved (homogeneous, regular) sparse collectives
3.  Other issues to be addressed: 

–  collective communication in sparse networks
–  Multi-threaded MPI
–  MPI with other models (threads, PGAS, extended message-

passing models)



MPI derived datatype mechanism 

MPI derived datatype mechanism (functionality for defining 
application-specific, structured, units of  communication) enables 

Zero-copy implementation: 
•  No explicit pack/unpack and other process local data 

reorganization. 
•  All necessary (process local) data movement implicit by 

communication operations. 

Higher-level, descriptive advantages, can lead to genuine 
performance improvements 
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Implementing a Classic: 
Zero-copy all-to-all communication 

with MPI derived datatypes 

Jesper Larsson Träff, Antoine Rougier, Sascha Hunold 
traff@par.tuwien.ac.at 

Vienna University of Technology (TU Wien) 
Faculty of Informatics 

Institute for Information Systems 
Research Group Parallel Computing 
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J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby: Efficient 
Algorithms for All-to-All Communications in Multiport Message-Passing 
Systems. IEEE Trans. Parallel Distrib. Syst. 8(11): 1143-1156 (1997) 

Case study: Zero-copy implementation of a classic, log-round alltoall 
algorithm 

Standard formulation: 
Step 1: process-local rotate of data elements 
Step 2: log rounds of communication, roughly p/2 (non-contiguous) 
elements grouped together and send/received per round 
Step 3: process-local reverse and rotate of elements 

We propose: 
• Algorithmic change to get rid of Step 3 
• Using per-element double-buffering and datatypes to achieve zero-
copy implementation 
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Useful derived datatype, not in MPI 

Circular vector: derived, derived datatype 

Can also be implemented using existing MPI constructors (struct 
of vector and contig); but quite tedious, with high overhead, and 
possibly more efficiently handled as native type 

stride 

blocksize Start offset 

Total size and element bound 
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for (k=1; k<p; k<<1) { // communication round 
  for (j=k; j<p; j++) { 
    // analyze bits of j 
    .. 
    b++; // number of blocks to send/receive 
  } 
  MPI_Type_create_struct(b,…,&sendblocktype); 
  MPI_Type_create_struct(b,…,&recvblocktype); 
  MPI_Type_commit(&sendblocktype); 
  MPI_Type_commit(&recvblocktype); 
 
  MPI_Sendrecv(MPI_BOTTOM,1,sendblocktype, 
               MPI_BOTTOM,1,recvblocktype,…); 
  MPI_Type_free(&sendblocktype); 
  MPI_Type_free(&recvblocktype); 
} 

The Zero-copy implementation 
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Jupiter, 36x1 MPI processes (small problems) 

• BasicBruck: Bounded vector better than indexed-block 
• ModBruck: Circular vector expensive 

zero 

basic 
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for (k=1; k<p; k<<1) { // communication round 
  for (j=k; j<p; j++) { 
    // analyze bits of j 
    .. 
    b++; // number of blocks to send/receive 
  } 
  MPI_Type_create_struct(b,…,&sendblocktype); 
  MPI_Type_create_struct(b,…,&recvblocktype); 
  MPI_Type_commit(&sendblocktype); 
  MPI_Type_commit(&recvblocktype); 
 
  MPI_Sendrecv(MPI_BOTTOM,1,sendblocktype, 
               MPI_BOTTOM,1,recvblocktype,…); 
  MPI_Type_free(&sendblocktype); 
  MPI_Type_free(&recvblocktype); 
} 

The Zero-copy implementation 

Per round overhead 
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Proposal, not in MPI: persistent collective operation 

Analogous to persistent point-to-point operations (in MPI) 

MPI_Alltoall_init(sendbuf,sendcount,sendtype, 
                  
recvbuf,recvcount,recvtype,comm, &req); 

precomputes all datatypes, creates communication schedule (log 
p round loop), and 

MPI_Start(&req); 

initiates and completes next alltoall operation (with given 
parameters) 
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Algorithmic 
improvement (change 
of element order and 
communication 
direction) 

Zero-copy 
Bruck: Per 
element 
alternate 
buffering with 
datatypes 

Basic Bruck 
algorithm with 
datatypes 

Note: Also for small problems, where the algorithm is competitive, we 
have a statistically significant improvement 



Other zero-copy investigations
1.  Hierarchical alltoall algorithms – use new MPI 3.0 functionality, 

competitive performance, complex reorderings by datatypes 
and MPI_Alltoallw. We identify a lack of functionality in 
MPI_Gather/Scatter interfaces

2.  Hierarchical gather/scatter/allgather algorithms: we 
conclusively show that zero-copy implementations are not 
possible. A change of interface specification is elaborated on 
(perhaps for discussion with MPI Forum?), a collection of new 
datatype constructors discussed

3.  Datatype normalization: Complexity issues have never been 
formally studied. We show that the problem can be solved 
optimally in polynomial time when only vector and index-
block constructors are allowed



Exascale PGAS 

•  Objectives:
– To investigate current limitations of traditional 

PGAS.
– To propose concrete solutions to current 

PGAS limitations.
– To increase scalability of collective operations 

and synchronization in GPI.
– To support fault-tolerance in GPI.
– Exploitation of diverse and hierarchical 

memory spaces in PGAS.



Global Address Space API: GPI 
Intranode communication API 

 
 

•  GPI: Global Address Space API   
•  RDMA over IB, RoCE, Cray 
•  Low Latency & Wire-speed 
•  C/C++, Fortan 
•  Thread safe 

•  Intel Xeon Phi, GPUs 

•  MPI Interoperability 

 
•  Asynchronous communication between segments, one-sided, non-blocking 
•  Zero-copy, no CPU cycles for communication 
•  Support for fault tolerance by a timeout mechanism 
•  (Sparse) collectives with time based blocking 
•  fast remote notification 
  



Overview over the relevant PGAS software stack 

Open-‐
SHMEM 

PGAS	  run0me	  (e.g.	  GASNet) 

Chapel CAF UPC 
MPI-‐
RMA 

GA 

ARMC I	  
and	  MP 
	   

GPI 
	   Compiler 

X10 

Network 

	   
 

PGAS approaches can be roughly divided into: 
•  Languages: 

•  UPC which extends the C language, CAF which extends Fortran, 
Chapel and X10 as standalone languages) 
•  Easy to switch to, however a lot of pressure on the compiler 

 
•  APIs (GPI, GA, ARMCI, OpenShmem): 

•  Explicitly implement the communication between the nodes 
•  To be used by application developers (like GPI) or by tool developers 
(like ARMCI) 



Gap Analysis for Exascale 

	   
 

Point to check Result 

Heterogeneous hardware fine 

Data Types fine 

Fault Tolerance Will become more important at Exascale, minimal 
requirements need to be checked 

Migration Paths from MPI 
to PGAS 

MPI end-points proposal will help future 
interoperability to map PGAS with MPI processing 
elements 

Isolation of Libraries Resources shared between main application and 
a library make isolation difficult 

Locality Topology information needs to be incorporated in 
PGAS approaches to quantify a distance to data 



PGAS-based MPI

•  Objectives:
–  Implement and evaluate efficient message 

passing libraries on top of RDMA operations
–  Implement and evaluate collective operations 

on top of RDMA operations
– Prototype implementation of MPI endpoints 

proposal
– Develop recommendations for MPI to allow 

efficient implementation on top of RDMA
– Develop recommendations for RDMA 

hardware



Enabling MPI Interoperability Through 
Flexible Communication Endpoints 

James	  Dinan,	  Pavan	  Balaji,	  David	  Goodell,	  
Douglas	  Miller,	  Marc	  Snir,	  and	  Rajeev	  Thakur	  

Euro-‐MPI	  2013;	  Courtesy	  Jim	  Dinan	  	  



Mapping of Ranks to Processes in MPI 

§  MPI	  provides	  a	  1-‐to-‐1	  mapping	  of	  ranks	  to	  processes	  
§  This	  was	  good	  in	  the	  past,	  but	  usage	  models	  have	  evolved	  

–  Programmers	  use	  many-‐to-‐one	  mapping	  of	  threads	  to	  processes	  
•  E.g.	  Hybrid	  parallel	  programming	  with	  OpenMP/threads	  

–  Other	  programming	  models	  also	  use	  many-‐to-‐one	  mapping	  
•  Interoperability	  is	  a	  key	  objec0ve,	  e.g.	  with	  Charm++,	  etc…	  
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Current Approaches to Hybrid MPI+Threads 

§  MPI	  message	  matching	  space:	  <communicator,	  sender,	  tag>	  
§  Two	  approaches	  to	  using	  THREAD_MULTIPLE	  

1.  Match	  specific	  thread	  using	  the	  tag:	  
–  Par00on	  the	  tag	  space	  to	  address	  individual	  threads	  
–  Limita0ons:	  

•  Collec0ves	  –	  Mul0ple	  threads	  at	  a	  process	  can’t	  par0cipate	  concurrently	  
•  Wildcards	  –	  Mul0ple	  threads	  concurrently	  requires	  care	  

2.  Match	  specific	  thread	  using	  the	  communicator:	  
–  Split	  threads	  across	  different	  communicators	  (e.g.	  Dup	  and	  assign)	  
–  Can	  use	  wildcards	  and	  collec0ves	  
–  However,	  limits	  connec0vity	  of	  threads	  with	  each	  other	  

27	  



Impact of Light Cores and Threads on Message Rate 

§  Shamelessly	  stolen	  from	  Brian	  Barref,	  et	  al.	  [EuroMPI	  ‘13]	  
§  Threads	  sharing	  a	  rank	  increase	  posted	  receive	  queue	  depth	  (x-‐axis)	  
§  Solu0on:	  More	  ranks!	  

–  Adding	  more	  MPI	  processes	  fragments	  the	  node	  
–  Can’t	  do	  shared	  memory	  programming	  across	  the	  whole	  node	  

28	  
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(a) Posted Receive Queue
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(b) Unexpected Message Queue

Figure 1: E↵ect of posted receive queue and unexpected message queue length on single-direction message rate.
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Figure 2: E↵ect of posted receive queue and unexpected message queue length on single-direction message rate, normalized
to a queue depth of 0.

are paired o↵ and communicate bidirectionally. The Sandy
Bridge and Ivy Bridge results show high initial message
rates, but tail o↵ rapidly, while the Knights Corner shows a
relatively steady performance curve as the number of pairs
communicating is increased. We believe that this is due to
memory bandwidth constraints in the Sandy Bridge and Ivy
Bridge processors relative to their peak performance. This
is born out by the comparison of the Sandy Bridge and Ivy
Bridge results. While the Ivy Bridge is a more advanced
core with higher peak message rate, the Sandy Bridge’s ex-
tra memory controllers appear to be the reason that it can
sustain higher message rates as more peers are added. When
available, we would expect the Ivy Bridge E-series proces-
sors to show a similar ability to sustain higher message rates
as peer count is increased.

The pre-post tests from Figure 4 post a large number of
receives, equally distributed by the number of peers in the
job then send an equal number of messages to all peers in
the job. The messages are all pre-posted and use an un-
timed barrier to ensure that all messages are expected on
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Endpoints: Flexible Mapping of Ranks to Processes 

§  Provide	  a	  many-‐to-‐one	  mapping	  of	  ranks	  to	  processes	  
–  Allows	  threads	  to	  act	  as	  first-‐class	  par0cipants	  in	  MPI	  opera0ons	  
–  Improve	  programmability	  of	  MPI	  +	  node-‐level	  and	  MPI	  +	  system-‐level	  models	  
–  Poten0al	  for	  improving	  performance	  of	  hybrid	  MPI	  +	  X	  

§  A	  rank	  represents	  a	  communica0on	  “endpoint”	  
–  Set	  of	  resources	  that	  supports	  the	  independent	  execu0on	  of	  MPI	  communica0ons	  

§  Note:	  Figure	  demonstrates	  many	  usages,	  some	  may	  impact	  performance	  
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Putting It All Together: Proposed Interface 

int	  MPI_Comm_create_endpoints(	  
	  MPI_Comm	  parent_comm,	  
	  int	  my_num_ep,	  
	  MPI_Info	  info,	  
	  MPI_Comm	  *out_comm_hdls[])	  

	  
§  Each	  rank	  in	  parent_comm	  gets	  my_num_ep	  ranks	  in	  

out_comm	  
–  My_num_ep	  can	  be	  different	  at	  each	  process	  
–  Rank	  order:	  process	  0’s	  ranks,	  process	  1’s	  ranks,	  etc.	  

§  Output	  is	  an	  array	  of	  communicator	  handles	  
–  ith	  handle	  corresponds	  to	  ith	  endpoint	  create	  by	  parent	  process	  
–  To	  use	  that	  endpoint,	  use	  the	  corresponding	  handle	  

30	  

0 2 3 4

1 20

1



Usage Models are Many… 

§  Intranode	  parallel	  programming	  with	  MPI	  
–  Spawn	  endpoints	  off	  MPI_COMM_SELF	  

§  Allow	  true	  thread	  mul0ple,	  with	  each	  thread	  addressable	  
–  Spawn	  endpoints	  off	  MPI_COMM_WORLD	  

	  
§  Obtain	  befer	  performance	  

–  Par00on	  threads	  into	  groups	  and	  assign	  a	  rank	  to	  each	  group	  
–  Performance	  benefits	  without	  par00oning	  shared	  memory	  

programming	  model	  

§  Interoperability	  
–  Examples:	  OpenMP	  and	  UPC	  

31	  



EPiGRAM Contributions

•  Context id allocation algorithm
– Multiple instantiations of the algorithm with 

identical answer
–  influence the implementations in both MPICH 

and OpenMPI
•  Alpha prototype implementation in 

McMPI
•  Beta prototype implementation in T3DMPI 
•  Participation in the Hybrid working group



Applications

•  Objectives:
– Use of the exascale MP, PGAS and PGAS-

based MPI software in two real-world 
applications: Nek5000, iPIC3D

– Analyze the performance of newly developed 
communication kernels in Nek5000 and iPIC3D

– Provide feed-back and guidance to the 
development of exascale programming 
models



EPiGRAM Applications
•  Two real-world application with exascale needs:

–  Nek5000 (https://nek5000.mcs.anl.gov/ ):
•  CFD code  for simulation of nuclear reactors and fluid turbulence
•  F77 (95%) C (5%) and MPI
•  Regular communication pattern involving neighbor processes

–  iPIC3D (https://github.com/CmPA/iPic3D/ ):
•  Particle code for simulation of interaction of solar wind with Earth’s 

magnetosphere (space weather)
•  C++ and MPI
•  Regular communication pattern involving neighbor processes

•  Initial work:
–  Identifying possible improvement in MPI communication kernels

•  Use of non-blocking CG and GMRes linear solvers. This requires redesign of 
solvers.

•  Use of sparse-collective to replace neighbor communication (might have 
improvement of message scheduling).

–  Porting applications to GPI
•  Identify interoperability issues between MPI and GPI.
•  Performance improvement with GPI One-sided.



Thinking Exascale
•  We use the LogGOPSim simulator (1), 

based on the LOGGops model, to:
–   Simulate the EPiGRAM applications on 

million nodes.
–  Assess the dependency of communication 

kernel performance on network bandwidth 
and latency.

–  Assess the importance of noise on 
applications communication kernel

•  We consider additional data-driven 
applications with irregular application 
patterns and : Graph500 (Graph 
construction + Breadth-first search), 
mpiBLAST (nucleotide or proteing 
alignment search)

(1) Hoefler, Torsten, Timo Schneider, and 
Andrew Lumsdaine. "LogGOPSim: 
simulating large-scale applications in the 
LogGOPS model." In Proceedings of  the 
19th ACM International Symposium on High 
Performance Distributed Computing, pp. 
597-604. ACM, 2010. 



Summary

•  MPI and PGAS will likely be important 
programming models on exascale systems

•  Scalability and performance issues need to 
be resolved

•  EPiGRAM tackles some of the important 
issues (collectives, data types, 
interoperability)



ExaMPI Workshop @ SC14
•  Explore potential and issues of MPI for the 

exascale era
•  Keynotes and invited talks from world-

leading experts
•  Explore hybrid systems

– Booster, GPU, MIC, PGAS

•  http://www.epigram-project.eu/exampi14/


