EPIGRAM

Exascale ProGRAmming Models

Towards Exascale Programming Models

HPC 2014
Cetraro
Erwin Laure, Stefano Markidis, KTH

—xascale Programming Models

o With the evolution of HPC architecture towards excascale, new
approaches for programming these machines need to be found -

EPiGRAM focuses on exploring programming models for the
exascale era.

Intense discussion whether existing models can be improved to
exascale or whether disruptive changes are needed.

What is used today?

Fortran 90/95
0
- I
Fortran 77 -
Not known [
9
Python |

10
No. of Applications

2049-8192
24%

129512
18%

513-2048
20%

MPI

Combined
MPI+OpenMP

Other/not
known/none

OpenMP

Combined MPI+Posix
threads

15 20 25 30 35 40
No. of Applications

Figures from a study of the 57 leading
applications used in Europe by the
PRACE Project

b
> |

" PRACE -

- sl —a

24th June 2014

CRESTA experiences

CAF to overlap

\ communication
IF with

computation ‘on
Tn Eaum..
/ elives
Simu g e trajectory of
hurric .ne Sandy

Acceleration

Task-graph based
parallelization

New communication models

CRESTQ

900

800

N
o
o

600

500

400

300

200

Forecast Days / Day

100

ISC 2014 4

T2047L137 IFS forecast model performance
RAPS12 (CY37R3, on HECToR), RAPS13 (CY38R2, on

=E=T|TAN RAPS13 CRESTA OCT-13

“TITAN RAPS13 CRESTA JUN-13

=+=HECToR RAPS12 CRESTA

TITAN)
=8=HECToR RAPS12 Original
0 20000 40000 60000 80000 100000 120000

Number of Cores

EPIGRAM believes in the incremental approach
and that the most promising parallel programming
environments can be scaled to exascale:

Message Passing and PGAS

A Window of Opportunity

MPI 3.0 is a major step forward but still not ready for exascale

By extending and improving GPI to exascale we will consolidate
the role of GPIl and establish it as the European PGAS approach.

EPiGRAM can complement the European CRESTA, DEEP, and
Mont-Blanc exascale projects.

— by exploring additional innovative PGAS approaches that go
well beyond those considered in the current CRESTA project

— by investigating efficient MP mechanisms that might useful for
hybrid Cluster-Booster architecture in DEEP

— by studying and analyzing one-sided communication

approaches for diverse memory spaces such as the one in
hybrid ARM-GPU systems in Mont-Blanc.

Key Objectives ot the Project

Address the scalability (performance and
memory consumption) problem for MP and

PGAS models.
Propose GPI| as the European PGAS

approach to exascale.

Design an hybrid MP-PGAS programming
model that combines the best features of the
two approaches.

Contribute to standardization efforts
Prepare two applications to exascale by

redesigning and implementing their
communications kernels.
EPIGRAM

Key Players and Their Main Focus

KTH: management (WP1),
applications (WP6)

TUW: exascale MP (WP2)

FRAUNHOFER: exascale
PGAS (WP3)

CRAY UK: programming
models for diverse memory
spaces (WP3)

EPCC: PGAS-based MPI

(WP4)
ONIVERSITY OF LLINOIS:
exascale MP (WP2) EPIGRAM

—xascale Message Passing

. Dealing with limited and slower memory:

— in-depth analysis of MPI derived datatype mechanism for
saving copy-operations;

— analysis of MPI collective interface specification with
suggestions for improvement
. Collective communication at scale:

— proposal for specification of homogeneous stencils, towards
improved (homogeneous, regular) sparse collectives

3. Other issues to be addressed:
— collective communication in sparse networks

— Multi-threaded MPI

— MPI with other models (threads, PGAS, extended message-
passing models)

MPI derived datatype mechanism

MPI derived datatype mechanism (functionality for defining
application-specific, structured, units of communication) enables

Zero-copy implementation:

* No explicit pack/unpack and other process local data
reorganization.

* All necessary (process local) data movement implicit by

communication operations.

Higher-level, descriptive advantages, can lead to genuine

performance improvements

Implementing a Classic:
Zero-copy all-to-all communication
with MPI derived datatypes

Jesper Larsson Trdff, Antoine Rougier, Sascha Hunold
traff@par.tuwien.ac.at
Vienna University of Technology (TU Wien)
Faculty of Informatics
Institute for Information Systems
Research Group Parallel Computing

e ICS 10-13.6.2014 ©Jesper Larsson Tréff m n

Case study: Zero-copy implementation of a classic, log-round alltoall
algorithm

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, D. Weathersby: Efficient
Algorithms for All-to-All Communications in Multiport Message-Passing
Systems. IEEE Trans. Parallel Distrib. Syst. 8(11): 1143-1156 (1997)

Standard formulation:

Step 1: process-local rotate of data elements

Step 2: log rounds of communication, roughly p/2 (non-contiguous)
elements grouped together and send/received per round

Step 3: process-local reverse and rotate of elements

We propose:

*Algorithmic change to get rid of Step 3

*Using per-element double-buffering and datatypes to achieve zero-
copy implementation

raraller ICS 10-13.6.2014 ®Jesper Larsson Tréff m n

Circular vector: derived, derived datatype

Useful derived datatype, not in MPT

stride

> >
Start offset blocksize

Total size and element bound

Can also be implemented using existing MPI constructors (struct
of vector and contig); but quite tedious, with high overhead, and
possibly more efficiently handled as native type

raraller ICS 10-13.6.2014 ®Jesper Larsson Tréff m n

Para

Computing

The Zero-copy implementation

for (k=1; k<p; k<<1) { // communication round
for (J=k; j<p; Jj++) {
// analyze bits of]

b++; // number of blocks to send/receive

}
MPI Type create struct (b,.., &sendblocktype);

MPI Type create struct (b,.., &recvblocktype);
MPI Type commit (&sendblocktype) ;
MPI Type commit (&recvblocktype);

MPI Sendrecv (MPI BOTTOM, 1, sendblocktype,
MPI BOTTOM, 1, recvblocktype,..);

MPI Type free(&sendblocktype);

MPI Type free(&recvblocktype);

o ICS 10-13.6.2014 ©Jesper Larsson Trdff

Jupiter, 36x1 MPI processes (small problems)

| 250 -

80+

algorithm algorithm
_ 70~ ® basicBruck-ix — 200- e basicBruck-ix
2 A basicBruck 2 A basicBruck
o = modBruck-ix o = modBruck-ix
E t modBruck g t modBruck

60 - ® zeroBruck-block 150 - ® zeroBruck-block

* zeroBruck * zeroBruck

100 -

50 - 7
basic . | | j | , | .
0 25 50 75 100 250 500 750

element size [Bytes] element size [Bytes]

*BasicBruck: Bounded vector better than indexed-block
*ModBruck: Circular vector expensive

reraller ICS 10-13.6.2014 ©Jesper Larsson Traff m n

The Zero-copy implementation

for (k=1; k<p; k<<1) { // communication round
for (3=k; 3<p; J++) {
// analyze bits of]

b++; // number of blocks to send/receive

/ A
MPI_Type_create_struct(b,m,&sendblocktype);<
N~

MPI Type create struct (b,.., &recvblocktype);
MPI Type commit (&sendblocktype) ;
MPI Type commit (&recvblocktype);

Per round overhead

MPI Sendrecv (MPI BOTTOM, 1, sendblocktype,
MPI BOTTOM, 1, recvblocktype,..);

MPI Type free(&sendblocktype);

MPI Type free(&recvblocktype);

e ICS 10-13.6.2014 ©Jesper Larsson Traff m n
Conpuing

Para

Proposal, not in MPI: persistent collective operation

MPI Alltoall init(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,comm, &req);

precomputes all datatypes, creates communication schedule (log
p round loop), and

MPI Start(&req);

initiates and completes next alltoall operation (with given
parameters)

Analogous to persistent point-to-point operations (in MPT)

e ICS 10-13.6.2014 ©Jesper Larsson Traff m n
[Compuing

Para

Algorithmic

Basic Bruck improvement (change
algorithm with :> of element order and
<‘1:| direction)
Zero-copy algorithm
Bruck: Per ® basicBruck-ix
2 40000~ element A basicBruck
° alternate = modBruck-ix
= buffering with : mOdg”‘Cl'(‘ ook
ZETODIUCK-DIOC
da‘ra’rypes * zeroBruck
20000 -

10000 20000 30000 40000
element size [Bytes]

Note: Also for small problems, where the algorithm is competitive, we
have a statistically significant improvement

raraller ICS 10-13.6.2014 ®Jesper Larsson Tréff m n

Other zero-copy investigations

1. Hierarchical alltoall algorithms — use new MPI 3.0 functionality,
competitive performance, complex reorderings by datatypes
and MPI_Alltoallw. We identify a lack of functionality in
MPI_Gather/Scatter interfaces

. Hierarchical gather/scatter/allgather algorithms: we
conclusively show that zero-copy implementations are not
possible. A change of interface specification is elaborated on
(perhaps for discussion with MPl Forum?), a collection of new
datatype constructors discussed

. Datatyr)e normalization: Complexity issues have never been
formally studied. We show that the problem can be solved
optimally in polynomial time when only vector and index-

block constructors are allowed
EPIGRAM

Exascale PGAS

* Objectives:

— To investigate current limitations of traditional
PGAS.

— To propose concrete solutions to current
PGAS limitations.

— To increase scalability of collective operations
and synchronization in GPI.

— To support fault-tolerance in GPI.
— Exploitation of diverse and hierarchical

memory spaces in PGAS.
EPIGRAM

Global Address Space API: GPI
Intranode communication API

* GPI: Global Address Space API

« RDMA over IB, RoCE, Cray
 Low Latency & Wire-specd e) e -
. A
° C/C++, FOI’tan f RiDMAmterconnect T
* Thread safe EEEN EEED
_ - - EpmE . - Epmi
* Intel Xeon Phi, GPUs Threads Threads Threads Threads

NUMA System Co-Processor NUMA System Co-Processor

* MPI Interoperability

* Asynchronous communication between segments, one-sided, non-blocking
» Zero-copy, no CPU cycles for communication

» Support for fault tolerance by a timeout mechanism

 (Sparse) collectives with time based blocking

- fast remote notification

Overview over the relevant PGAS software stack

PGAS approaches can be roughly divided into:

» Languages:
« UPC which extends the C language, CAF which extends Fortran,
Chapel and X10 as standalone languages)
 Easy to switch to, however a lot of pressure on the compiler

* APIs (GPI, GA, ARMCI, OpenShmem):
 Explicitly implement the communication between the nodes
* To be used by application developers (like GPI) or by tool developers

(like ARMCI)
EPIGRAM

Gap Analysis for Exascale

Heterogeneous hardware | fine

Data Types fine

Fault Tolerance Will become more important at Exascale, minimal
requirements need to be checked

Migration Paths from MPI | MPI end-points proposal will help future
to PGAS interoperability to map PGAS with MPI processing
elements

Isolation of Libraries Resources shared between main application and
a library make isolation difficult

Locality Topology information needs to be incorporated in
PGAS approaches to quantify a distance to data

EPIGRAM

PGAS-based MPI

* Objectives:

— Implement and evaluate efficient message
passing libraries on top of RDMA operations

— Implement and evaluate collective operations
on top of RDMA operations

— Prototype implementation of MPl endpoints
proposal

— Develop recommendations for MPI to allow
efficient implementation on top of RDMA

— Develop recommendations for RDMA

hardware FPiIGRAM

Enabling MPI Interoperability Through
Flexible Communication Endpoints

James Dinan, Pavan Balaji, David Goodell,
Douglas Miller, Marc Snir, and Rajeev Thakur

Argene @t/el

NATIONAL
LABORATORY

<||I

Euro-MPI 2013; Courtesy Jim Dinan

Mapping of Ranks to Processes in MPI

Conventional Communicator

/ Process \ / Process \

o)| [Con

)TK N\ XX

\

= MPI provides a 1-to-1 mapping of ranks to processes

= This was good in the past, but usage models have evolved
— Programmers use many-to-one mapping of threads to processes
e E.g. Hybrid parallel programming with OpenMP/threads

— Other programming models also use many-to-one mapping
e Interoperability is a key objective, e.g. with Charm++, etc...

Current Approaches to Hybrid MPI+Threads

" MPI message matching space: <communicator, sender, tag>
= Two approaches to using THREAD MULTIPLE

1. Match specific thread using the tag:
— Partition the tag space to address individual threads
— Limitations:
e Collectives — Multiple threads at a process can’t participate concurrently
e Wildcards — Multiple threads concurrently requires care

2. Match specific thread using the communicator:
— Split threads across different communicators (e.g. Dup and assign)
— Can use wildcards and collectives
— However, limits connectivity of threads with each other

Impact of Light Cores and Threads on Message Rate

5e+06

Ivy Bl‘ridge —
Xeon Phi (code named Knights Corner) =~
4.5e+06 | Arm Cortex-A9 - |

4e+06 -
3.5e+06 |-
3e+06 [
2.5e+06 |-

2e+06 -

Message Rate (messages/second)

1.5e+06 -

1e+06 [

500000

X
PWIK- K-
0 KoK % N i S PP U0

N 1
0 200 400 600 800 1000 1200
Queue Depth (entries)

= Shamelessly stolen from Brian Barrett, et al. [EuroMPI “13]
= Threads sharing a rank increase posted receive queue depth (x-axis)
= Solution: More ranks!

— Adding more MPI processes fragments the node
— Can’t do shared memory programming across the whole node

Endpoints: Flexible Mapping of Ranks to Processes

Endpoints Communicator

/ Process \

o]

/ Process \

| Rank Il Rank I

1
-~ Sa

Process \

Rank]

ONO

o J

Provide a many-to-one mapping of ranks to processes
— Allows threads to act as first-class participants in MPI operations

— Improve programmability of MPI + node-level and MPI + system-level models

— Potential for improving performance of hybrid MPI + X
A rank represents a communication “endpoint”

— Set of resources that supports the independent execution of MPI communications
Note: Figure demonstrates many usages, some may impact performance

intel'

Putting It All Together: Proposed Interface

int MPI_Comm_create_endpoints(0 1
MPI Comm parent_comm,
int my num_ep,
MPI Info info, G Q
MPI_Comm *out_comm_hdls[])

= Each rank in parent_comm gets my num_ep ranks in
out_comm
— My _num_ep can be different at each process
— Rank order: process 0’s ranks, process 1’s ranks, etc.

= Qutputis an array of communicator handles
— " handle corresponds to i endpoint create by parent process
— To use that endpoint, use the corresponding handle

Usage Models are Many...

" |ntranode parallel programming with MPI
— Spawn endpoints off MPI_COMM_SELF

= Allow true thread multiple, with each thread addressable
— Spawn endpoints off MPI_COMM_WORLD

= (QObtain better performance
— Partition threads into groups and assign a rank to each group

— Performance benefits without partitioning shared memory
programming model

" |nteroperability
— Examples: OpenMP and UPC

-PiGRAM Contributions

Context id allocation algorithm

— Multiple instantiations of the algorithm with
identical answer

— influence the implementations in both MPICH
and OpenMP|

Alpha prototype implementation in
McMPI

Beta prototype implementation in T3DMP|
Participation in the Hybrid working group

Applications

* Objectives:

— Use of the exascale MP, PGAS and PGAS-
based MPI software in two real-world
applications: Nek5000, iPIC3D

— Analyze the performance of newly developed
communication kernels in Nek5000 and iPIC3D

— Provide teed-back and guidance to the
development of exascale programming
models

-PiGRAM Applications

« Two real-world application with exascale needs:
— Nek5000 (https://nek5000.mcs.anl.gov/):
» CFD code for simulation of nuclear reactors and fluid turbulence
« F77 (95%) C (5%) and MPI
* Regular communication pattern involving neighbor processes
— iPIC3D (https://qgithub.com/CmPA/iPic3D/):

* Particle code for simulation of interaction of solar wind with Earth’s
magnetosphere (space weather)

e C++ and MPI

» Regular communication pattern involving neighbor processes

e |Initial work:

— ldentifying possible improvement in MPI communication kernels

* Use of non-blocking CG and GMRes linear solvers. This requires redesign of
solvers.

Use of sparse-collective to replace neighbor communication (might have
improvement of message scheduling).

— Porting applications to GPI

* |dentify interoperability issues between MPI and GPI. .
* Performance improvement with GPl One-sided. EP|G RAM

Thinking Exascale

« We use the LogGOPSIim simulator (1), =

based on the LOGGops model, to: /.

— Simulate the EPIGRAM applications on
million nodes. A

o

% (maximum of finishing time)
- — -
(=3 (=3

/

— Assess the dependency of communication
kernel performance on network bandwidth
and latency.

— Assess the importance Of noise on Time vs Network Parameter
applications communication kernel

« We consider additional data-driven
applications with irregular application
patterns and : Graph500 (Graph | |

. . (1) Hoefler, Tors.ten, "Tlmo Schn@der, and
construction + Breadth-first search), Andrew Lumsdaine. "LogGOPSin:

simulating large-scale applications in the

m pl B I_AST (n u Cl eot| d e oOr p rote | N g LogGOPS model." In Proceedings of the

19th ACM International Symposium on High

a | | g nme n‘t sSea I'Ch) Performance Distributed Computing, pp.
597-604. ACM, 2010.

Summary

« MPIl and PGAS will likely be important
programming models on exascale systems

* Scalability and performance issues need to
be resolved

« EPIGRAM tackles some of the important
issues (collectives, data types,
interoperability)

ExaMPl Workshop @ SC14

Explore potential and issues of MPI tor the
exascale era

Keynotes and invited talks from world-
leading experts

Explore hybrid systems
— Booster, GPU, MIC, PGAS

http://www.epigram-project.eu/exampil4/

