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3D Finite Element
Test Problem



LS-DYNA Implicit
Half Million Elements

T i m i n g   i n f o r m a t i o n
CPU(seconds)   %CPU  Clock(seconds) %Clock

----------------------------------------------------------------
Initialization ....... 2.6513E+01    0.24     2.7598E+01    1.53

Element processing ... 8.1698E+01    0.73     7.6144E+01    4.22
Binary databases ..... 2.0471E+00    0.02     4.8657E-01    0.03
ASCII database ....... 1.3164E-04    0.00     1.5000E-05    0.00
Contact algorithm .... 2.9563E+01    0.26     5.7157E+00    0.32

Interf. ID         1 7.6828E+00    0.07     1.2124E+00    0.07
Interf. ID         2 4.8080E+00    0.04     9.7007E-01    0.05
Interf. ID         3 4.4934E+00    0.04     9.8310E-01    0.05
Interf. ID         4 5.5574E+00    0.05     1.2091E+00    0.07
Interf. ID         5 7.0113E+00    0.06     1.3380E+00    0.07

Contact entities ..... 0.0000E+00    0.00     0.0000E+00    0.00
Rigid bodies ......... 8.5901E-04    0.00     3.1600E-04    0.00

Implicit Nonlinear ... 8.7434E+00    0.08     6.5756E+00    0.36
Implicit Lin. Alg. ... 1.1063E+04   98.67     1.6898E+03   93.55

----------------------------------------------------------------
T o t a l s            1.1212E+04  100.00     1.8063E+03  100.00

Half million elements, eight Intel Nehalem cores



Major software components

• All of LS-DYNA
• Linear Solver

• Reordering (Metis) & symbolic factorization
• Redistribute & permute sparse matrix
• Factor, i.e., for all supernodes:

• Assemble the frontal matrix
• Factor the frontal matrix
• Stack its Schur complement

• Solve



Time in solver (sec)
Eight Nehalem Threads

grep WCT mes0000 => 

WCT: symbolic factorization =    18.952
WCT: matrix redistribution  =     5.221
WCT: factorization          =   795.354
WCT: numeric solve          =     2.705
WCT: total imfslv_mf2       =   826.735
WCT: symbolic factorization =    16.560
WCT: matrix redistribution  =     5.087
WCT: factorization          =   804.471
WCT: numeric solve          =     2.819
WCT: total imfslv_mf2       =   829.281



Start by accelerating 
factorization

• All of LS-DYNA
• Multifrontal Linear Solver

• Reordering (Metis) & symbolic factorization
• Redistribute & permute sparse matrix
• Factor, i.e., for all supernodes

• Assemble the frontal matrix
• Factor the frontal matrix with accelerator
• Stack its Schur complement

• Solve



Multifontal Method
Toy Problem
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1 X X   X     
3 XX     X
2 XXX   *X*
7 X XX  
9 XX  X
8 XXX*X*
4 X *X *XX* 
5 X  XXXX
6 X* X**XX

do 4 k = 1, 9
do 1 i = k + 1, 9

a(i, k) = a(i,k) / a(k,k)
1       continue

do 3 j = k + 1, 9
do 2 i = k + 1, 9

a(i,j) = a(i,j) –
1                a(i,k) * 
2                a(k,j)

2         continue
3       continue
4     continue



Multifrontal View of a Toy Matrix
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Multifrontal Method
Duff and Reid, ACM TOMS 1983



A Real Problem : “Hood”

Automotive Hood Inner Panel
Springback using LS-DYNA



“Hood” Elimination Tree

Each frontal matrix’s triangle scaled 
by operations required to factor it.



Exploiting Concurrency
Toy with MPI & OpenMP

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

Processor 0
Processor 1

D
O

A
LL

DOALL

DOALLDOALL



Why Accelerators?

Tesla vs Nehalem, courtesy of Stan Posey
Similar expectations for Intel Phi



Left-Looking Accelerator
Factorization of a Frontal Matrix

Assemble frontal matrix on 
host CPU

Initialize by sending panel 
of assembled frontal matrix

Only large frontal matrices 
due to high cost of sending 
data to and from 
accelerator



Eliminate panels

Factor diagonal block



Eliminate panels

Eliminate off-diagonal panel



Fill Upper Triangle



Update Schur Complement

L S

Update panels with DGEMM
S = S – L * U

Assumes vendor math library 
DGEMM is extremely fast

U



S

U

Update Schur Complement

Wider panels in Schur 
complement

DGEMM is even faster
S = S – L * U

L



Return Entire Frontal Matrix

Return error if diagonal of 
0.0 encountered or pivot 
threshold exceeded

Otherwise complete frontal 
matrix is returned

Schur complement added to 
initial values on host CPU



Panels distributed with MPI

Factor panels broadcast 
and sent to GPU.

GPU eliminates factor panel 
and performs large-rank 
updates to the Schur-
complement.

Load imbalance is major 
bottleneck, so this needs 
revisiting

0

~100

0 0 11 1



OpenMP on MIC
(and on Xeon host)

do j = jl, jr
do i = jl + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

sq = jr – jl + 1
c$omp  parallel do
c$omp& shared (jl, jr, sq, ld, s)
c$omp& private (ii, j, i, il, ir)

do ii = jl + 1, ld, sq
do j = jl, jr
il = ii
ir = min(ii + sq - 1, ld)
do i = il, ir
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

end do



Fortran vs CUDA

do j = jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

ip=0;
for (j = jl; j <= jr; j++) {

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i  = jr + 1 + tid; i <= ld; 
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x  = x  + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}



Factorization Performance on 
Individual Frontal Matrices

Construct a family 
of model frontal 
matrices

Eliminate “size”
equations from 5X 
their number

size

5 * size



Multithreaded Host Throughput 
Factoring a Model Frontal Matrix

Intel Nehalem



Host Throughput with MPI 
Factoring a Model Frontal Matrix

For larger frontal matrices, 
XX Gflop/s have been observed

Get MPI results from giant



Hybrid (MPI + OpenMP) Throughput 
Factoring a Model Frontal Matrix

For larger frontal matrices, 
XX Gflop/s have been observed

Get hybrid results from giant



Nehalem & Tesla Throughput 
Factoring a Model Frontal Matrix

For larger frontal matrices, 
>250 Gflop/s have been observed



Ivy Bridge & Accelerator 
Factoring a Model Frontal Matrix



GPUs Get the Larger 
Supernodes

Hood’s tree

Three cylinders benchmark



Relative Time (sec)

Nested cylinders benchmarks



Relative Performance (GFlop/s)

Nested cylinders benchmarks



Work in Progress

• Near Term
• Further accelerator performance optimization
• Better MPI + accelerators
• Pivoting on accelerators for numerical stability

• Longer Term
• Factor many small frontal matrices on the 

accelerators
• Assemble initial values
• Maintain real stack

• If the entire matrix fits on the accelerator
• Forward and back solves
• Exploit GDRAM memory bandwidth



This material is based on research sponsored by the U.S. Joint 
Forces Command via a contract with the Lockheed Martin 
Corporation and SimIS, Inc., and on research sponsored by the Air 
Force Research Laboratory under agreement numbers F30602-02-
C-0213 and FA8750-05-2-0204. The U.S. Government is authorized 
to reproduce and distribute reprints for Governmental purposes 
notwithstanding any copyright notation thereon. The views and 
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies 
or endorsements, either expressed or implied, of the U.S. 
Government. Approved for public release; distribution is unlimited.  

Research Initially Funded by 
US JFCOM and AFRL



Bonus Slides



GPU Architecture

Multiple SIMD cores

Multithreaded
O(1000) per GPU

Banked shared memory
32 Kbytes Tesla
48 Kbytes Fermi

Simple thread model
Only sync at host

Courtesy NVIDIA



Fortran vs CUDA

do j = jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

ip=0;
for (j = jl; j <= jr; j++) {

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i  = jr + 1 + tid; i <= ld; 
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x  = x  + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}



GPU gets larger Supernodes



Multicore Performance (i4r4) 
vs. the Elimination Tree



Relative Performance (sec)
half-million elements, in-core

MPI, OpenMP, GPU 1st Factorization LS-DYNA

8 threads 795 1806

8 threads + GPU 283 775

2 MPI x 4 threads 772 1659

2 MPI x 4 + 2 GPU 211 537

Nested cylinders benchmark



Relative Performance (sec)
million elements, out-of-core

MPI, OpenMP, GPU 1st Factorization LS-DYNA

8 threads 6131 15562

8 threads + GPU 2828 9143

2 MPI x 4 threads 6248 15287

2 MPI x 4 + 2 GPU 2567 8214

Nested cylinders benchmark



Time in out-of-core solver (sec)
Eight threads plus GPU

grep WCT mes0000 => 

WCT: symbolic factorization =    51.764
WCT: matrix redistribution  =    10.875
WCT: factorization          =  2828.933
WCT: numeric solve          =  1409.523
WCT: total imfslv_mf2       =  4316.063
WCT: symbolic factorization =    40.244
WCT: matrix redistribution  =    10.685
WCT: factorization          =  2679.422
WCT: numeric solve          =  1543.953
WCT: total imfslv_mf2       =  4346.260

Note: almost half the elapsed time for LS-DYNA 
(~4400 sec. out of 9143) is spent in disk I/O.


