
Accelerating the Multifrontal Method

Information Sciences Institute

22 June 2012
Bob Lucas, Gene Wagenbreth, Dan Davis, Roger Grimes
{rflucas,genew,ddavis}@isi.edu and grimes@lstc.com

3D Finite Element
Test Problem

LS-DYNA Implicit
Half Million Elements

T i m i n g i n f o r m a t i o n
CPU(seconds) %CPU Clock(seconds) %Clock

--
Initialization 2.6513E+01 0.24 2.7598E+01 1.53

Element processing ... 8.1698E+01 0.73 7.6144E+01 4.22
Binary databases 2.0471E+00 0.02 4.8657E-01 0.03
ASCII database 1.3164E-04 0.00 1.5000E-05 0.00
Contact algorithm 2.9563E+01 0.26 5.7157E+00 0.32

Interf. ID 1 7.6828E+00 0.07 1.2124E+00 0.07
Interf. ID 2 4.8080E+00 0.04 9.7007E-01 0.05
Interf. ID 3 4.4934E+00 0.04 9.8310E-01 0.05
Interf. ID 4 5.5574E+00 0.05 1.2091E+00 0.07
Interf. ID 5 7.0113E+00 0.06 1.3380E+00 0.07

Contact entities 0.0000E+00 0.00 0.0000E+00 0.00
Rigid bodies 8.5901E-04 0.00 3.1600E-04 0.00

Implicit Nonlinear ... 8.7434E+00 0.08 6.5756E+00 0.36
Implicit Lin. Alg. ... 1.1063E+04 98.67 1.6898E+03 93.55

--
T o t a l s 1.1212E+04 100.00 1.8063E+03 100.00

Half million elements, eight Intel Nehalem cores

Major software components

• All of LS-DYNA
• Linear Solver

• Reordering (Metis) & symbolic factorization
• Redistribute & permute sparse matrix
• Factor, i.e., for all supernodes:

• Assemble the frontal matrix
• Factor the frontal matrix
• Stack its Schur complement

• Solve

Time in solver (sec)
Eight Nehalem Threads

grep WCT mes0000 =>

WCT: symbolic factorization = 18.952
WCT: matrix redistribution = 5.221
WCT: factorization = 795.354
WCT: numeric solve = 2.705
WCT: total imfslv_mf2 = 826.735
WCT: symbolic factorization = 16.560
WCT: matrix redistribution = 5.087
WCT: factorization = 804.471
WCT: numeric solve = 2.819
WCT: total imfslv_mf2 = 829.281

Start by accelerating
factorization

• All of LS-DYNA
• Multifrontal Linear Solver

• Reordering (Metis) & symbolic factorization
• Redistribute & permute sparse matrix
• Factor, i.e., for all supernodes

• Assemble the frontal matrix
• Factor the frontal matrix with accelerator
• Stack its Schur complement

• Solve

Multifontal Method
Toy Problem

1

2

3

7

8

9

4

5

6

1 X X X
3 XX X
2 XXX *X*
7 X XX
9 XX X
8 XXX*X*
4 X *X *XX*
5 X XXXX
6 X* X**XX

do 4 k = 1, 9
do 1 i = k + 1, 9

a(i, k) = a(i,k) / a(k,k)
1 continue

do 3 j = k + 1, 9
do 2 i = k + 1, 9

a(i,j) = a(i,j) –
1 a(i,k) *
2 a(k,j)

2 continue
3 continue
4 continue

Multifrontal View of a Toy Matrix

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

1

2

3

7

8

9

4

5

6

Multifrontal Method
Duff and Reid, ACM TOMS 1983

A Real Problem : “Hood”

Automotive Hood Inner Panel
Springback using LS-DYNA

“Hood” Elimination Tree

Each frontal matrix’s triangle scaled
by operations required to factor it.

Exploiting Concurrency
Toy with MPI & OpenMP

8
4
5
6

2
4
5
6

7
4
8

9
6
8

3
2
6

1
2
4

Processor 0
Processor 1

D
O

A
LL

DOALL

DOALLDOALL

Why Accelerators?

Tesla vs Nehalem, courtesy of Stan Posey
Similar expectations for Intel Phi

Left-Looking Accelerator
Factorization of a Frontal Matrix

Assemble frontal matrix on
host CPU

Initialize by sending panel
of assembled frontal matrix

Only large frontal matrices
due to high cost of sending
data to and from
accelerator

Eliminate panels

Factor diagonal block

Eliminate panels

Eliminate off-diagonal panel

Fill Upper Triangle

Update Schur Complement

L S

Update panels with DGEMM
S = S – L * U

Assumes vendor math library
DGEMM is extremely fast

U

S

U

Update Schur Complement

Wider panels in Schur
complement

DGEMM is even faster
S = S – L * U

L

Return Entire Frontal Matrix

Return error if diagonal of
0.0 encountered or pivot
threshold exceeded

Otherwise complete frontal
matrix is returned

Schur complement added to
initial values on host CPU

Panels distributed with MPI

Factor panels broadcast
and sent to GPU.

GPU eliminates factor panel
and performs large-rank
updates to the Schur-
complement.

Load imbalance is major
bottleneck, so this needs
revisiting

0

~100

0 0 11 1

OpenMP on MIC
(and on Xeon host)

do j = jl, jr
do i = jl + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

sq = jr – jl + 1
c$omp parallel do
c$omp& shared (jl, jr, sq, ld, s)
c$omp& private (ii, j, i, il, ir)

do ii = jl + 1, ld, sq
do j = jl, jr
il = ii
ir = min(ii + sq - 1, ld)
do i = il, ir
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

end do

Fortran vs CUDA

do j = jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

ip=0;
for (j = jl; j <= jr; j++) {

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x = x + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}

Factorization Performance on
Individual Frontal Matrices

Construct a family
of model frontal
matrices

Eliminate “size”
equations from 5X
their number

size

5 * size

Multithreaded Host Throughput
Factoring a Model Frontal Matrix

Intel Nehalem

Host Throughput with MPI
Factoring a Model Frontal Matrix

For larger frontal matrices,
XX Gflop/s have been observed

Get MPI results from giant

Hybrid (MPI + OpenMP) Throughput
Factoring a Model Frontal Matrix

For larger frontal matrices,
XX Gflop/s have been observed

Get hybrid results from giant

Nehalem & Tesla Throughput
Factoring a Model Frontal Matrix

For larger frontal matrices,
>250 Gflop/s have been observed

Ivy Bridge & Accelerator
Factoring a Model Frontal Matrix

GPUs Get the Larger
Supernodes

Hood’s tree

Three cylinders benchmark

Relative Time (sec)

Nested cylinders benchmarks

Relative Performance (GFlop/s)

Nested cylinders benchmarks

Work in Progress

• Near Term
• Further accelerator performance optimization
• Better MPI + accelerators
• Pivoting on accelerators for numerical stability

• Longer Term
• Factor many small frontal matrices on the

accelerators
• Assemble initial values
• Maintain real stack

• If the entire matrix fits on the accelerator
• Forward and back solves
• Exploit GDRAM memory bandwidth

This material is based on research sponsored by the U.S. Joint
Forces Command via a contract with the Lockheed Martin
Corporation and SimIS, Inc., and on research sponsored by the Air
Force Research Laboratory under agreement numbers F30602-02-
C-0213 and FA8750-05-2-0204. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U.S.
Government. Approved for public release; distribution is unlimited.

Research Initially Funded by
US JFCOM and AFRL

Bonus Slides

GPU Architecture

Multiple SIMD cores

Multithreaded
O(1000) per GPU

Banked shared memory
32 Kbytes Tesla
48 Kbytes Fermi

Simple thread model
Only sync at host

Courtesy NVIDIA

Fortran vs CUDA

do j = jl, jr
do i = jr + 1, ld
x = 0.0
do k = jl, j - 1
x = x + s(i, k) * s(k, j)

end do
s(i, j) = s(i, j) - x

end do
end do

ip=0;
for (j = jl; j <= jr; j++) {

if(ltid <= (j-1)-jl){
gpulskj(ip+ltid) = s[IDXS(jl+ltid,j)];
}

ip = ip + (j - 1) – jl + 1;
}

__syncthreads();

for (i = jr + 1 + tid; i <= ld;
i += GPUL_THREAD_COUNT) {

for (j = jl; j <= jr; j++) {
gpuls(j-jl,ltid) = s[IDXS(i,j)];
}

ip=0;
for (j = jl; j <= jr; j++) {

x = 0.0f;
for (k = jl; k <= (j-1); k++) {

x = x + gpuls(k-jl,ltid) * gpulskj(ip);
ip = ip + 1;
}
gpuls(j-jl,ltid) -= x;

}
for (j = jl; j <= jr; j++) {

s[IDXS(i,j)] = gpuls(j-jl,ltid);
}

}

GPU gets larger Supernodes

Multicore Performance (i4r4)
vs. the Elimination Tree

Relative Performance (sec)
half-million elements, in-core

MPI, OpenMP, GPU 1st Factorization LS-DYNA

8 threads 795 1806

8 threads + GPU 283 775

2 MPI x 4 threads 772 1659

2 MPI x 4 + 2 GPU 211 537

Nested cylinders benchmark

Relative Performance (sec)
million elements, out-of-core

MPI, OpenMP, GPU 1st Factorization LS-DYNA

8 threads 6131 15562

8 threads + GPU 2828 9143

2 MPI x 4 threads 6248 15287

2 MPI x 4 + 2 GPU 2567 8214

Nested cylinders benchmark

Time in out-of-core solver (sec)
Eight threads plus GPU

grep WCT mes0000 =>

WCT: symbolic factorization = 51.764
WCT: matrix redistribution = 10.875
WCT: factorization = 2828.933
WCT: numeric solve = 1409.523
WCT: total imfslv_mf2 = 4316.063
WCT: symbolic factorization = 40.244
WCT: matrix redistribution = 10.685
WCT: factorization = 2679.422
WCT: numeric solve = 1543.953
WCT: total imfslv_mf2 = 4346.260

Note: almost half the elapsed time for LS-DYNA
(~4400 sec. out of 9143) is spent in disk I/O.

