

Adiabatic Quantum Annealing Update

Bob Lucas USC – Lockheed Martin Quantum Computing Center July 8, 2014

USC Colleagues

School of Engineering

Broader Collaborators

Lockheed Martin

Greg Tallant, Peter Stanfill, and Steve Adachi ETH Matthias Troyer and Troels Ronnow Google Sergio Boixo UCL

Paul Warburton and Walter Vinci

Outline

D-Wave Machine

Research Results to Date

Applications

Summary

.

The End of Dennard Scaling 10^{7} Transistors (Thousands) 10^{6} 10⁵ Single-Thread Performance (SpecINT) 10^{4} Frequency (MHz) 10^{3} **Typical Power** 10^{2} (Watts) Number 10^{1} of Cores 10^{0} 1980 1985 1990 1995 2000 2005 2010 2015 1975 Data collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten

Need More Capability?

Exploit a New Phenomenon D-Wave Quantum Annealer

Massive Scaling Tianhe-2 (3M cores)

Application Specific Systems D.E. Shaw Research Anton

Adiabatic Quantum Annealing

Problem: find the ground state of

$$H_{\text{Ising}} = \sum_{j} h_{j} \sigma_{j}^{z} + \sum_{(i,j)\in E} J_{ij} \sigma_{i}^{z} \sigma_{j}^{z}$$

Shown by Barahona (1982) to be NP-hard in 2D, $J_{ii} = \pm$, $h_i \neq 0$.

Use adiabatic interpolation from transverse field (Farhi et al., 2000)

Graph Embedding implemented on DW-1 via Chimera graph retains NP-hardness (V. Choi, 2010)

D-Wave System Collage

Eight Qubit Unit Cell

Images courtesy D-Wave

Chimera Graph Topology

The topology of the D-Wave Two at the USC – Lockheed Martin Quantum Computing Center.

503 of 512 qubits calibrated and mapped.

D-Wave's Version of "Moore's Law"

Outline

D-Wave Machine

Research Results to Date

Applications

Summary

.

School of Engineering

Simulated Quantum Annealing

D-Wave One Experiments

144 embeddings

Reference: S. Boixo,, T. Albash, F.M. Spedalieri, N. Chancello, D.A. Lidar, Nature Comm. 4, 2067 (2013).

Scalable Quantum Signature

S. Boixo, T. F. Rønnow, S. Isakov, Z. Wang, D. Wecker, D. A. Lidar, J. M. Martinis, M. Troyer, Nature Physics 10, 218–224 (2014)

Witness for Entanglement

Collaboration with D-Wave

Only they can take the tunneling microscopy measurements needed Allows us to infer the value of an entanglement witness

Lanting, et.al, PRX 4, 021001 2014

Performance of Classical Exact Solvers

Quantum Annealing vs. Simulated Annealing

D-Wave 2 vs. Eight-core Pentium (USC & ETH)

Quantum Annealing vs. Simulated Annealing

D-Wave 2 vs. Nvidia Kepler GPU (USC & ETH)

Hard problems motivated by satisfiability

Frustration

Itay Hen, Performance of D-Wave Two on Problems with Planted Solutions, AQC 2014

Viterbi

School of Engineering

Random walk to create frustrated loops that respect a planted solution

Hard problems for multiple heuristics

"at least once with 99% chance" – a comparison.
universal peak in hardness.

School of Engineering

Better heuristics?

Selby motivated by earlier comparisons with simulated annealing **Multiple Xeon cores?**

SAT solvers often don't scale well MPI overheads are O(us).

Not the only way to use CMOS

FPGA circuits (Victor Martin-Major's earlier Janus talk) ASICs ala Anton (Mark Moraes's talk) Full custom circuits

"D-Wave problem"

Best case for D-Wave Not at all clear that this will extend to real applications

Early Research | X University of Southern California

Outline

D-Wave Machine

Research Results to Date

Applications

Summary

.

What Problems Might be Amenable?

Problem	Application
Traveling salesman	Logistics, vehicle routing
Minimum Steiner tree	Circuit layout, network design
Graph coloring	Scheduling, register allocation
MAX-CLIQUE	Social networks, bioinformatics
QUBO	Machine learning
Integer Linear Programming	Natural language processing
Sub-graph isomorphism	Cheminformatics, drug discovery
Motion planning	Robotics
MAX-2SAT	Artificial intelligence

NP-complete problems from Wikipedia

On-Going Applications Research

Verification and Validation

Model checking for DARPA Cyber physical system V&V at Lockheed Martin

Optimization of System Design

Collaboration with Lockheed Martin

Image Processing

Image registration at D-Wave Image recognition at Google Organic photovoltaic triage at Harvard

Missile Defense

Closely-spaced objects at Aerospace

Model Checking

- Given a:
 - Finite transition system M
 - A temporal property p
- The model checking problem:
 - Does *M* satisfy *p*?

- $\begin{array}{l} (open \lor ((atfloor \land \neg open) \ \mathcal{U} \\ (open \lor ((\neg atfloor \land \neg open) \ \mathcal{U} \\ (open \lor ((atfloor \land \neg open) \ \mathcal{U} \\ (open \lor (\neg atfloor \ \mathcal{U} \ open)))))))))) \end{array}$
- Counter-example guided abstraction refinement

- Identify combinatorial optimization components of classical algorithms and apply AQO

Nested Dissection Reordering

Best reordering algorithm for many linear systems

Widely used in practice today Available in packages such as Metis and Scotch

Basic ND algorithm

Find a small separator to partition the matrix into two halves In general, this is an NP-complete problem
Refine the separator, "straightening" it minimize separator length balance the two subgraphs
Recursively partition the remaining subgraphs

Many Partitioning Heuristics Available

Ones I know used

Level Sets George and Liu Ashcraft and Grimes

Moment of Inertia

Fiduccia-Mattheyses

Spectral Bisection

Fiedler vectors

Ones I don't know of

Simulated Annealing

Quantum Annealing

Ising Models for NP-hard Problems

Graph bisection can be described as an Ising spin glass J Phys **A19** 1605 (1986)

Since then, Ising models for many other problems have been found too arXiv: 1302.5843

The general goal: find a cost function H (Hamiltonian) whose solutions correspond to the hard problem Create energy penalties for suboptimal solutions

Ising model for Graph Partitioning

Partition the graph into two domains: spin up or down Add energy penalty A to configurations that don't bisect Add energy penalty B to edges in the separator Finds an edge separator

Direct embedding of Ising Model to Chimeral Graph

Embedded 10-Node Line

Use strong couplings between qubits to create virtual nodes with full connectivity

Strong coupling forces coupled qubits into the same state for low energy solutions

Pros: Allows embedding of any graph topology with N nodes, no classical post-processing necessary

Cons: Limited by number of qubits, Mapping problem to chimeral graph for large N is NP-Hard, Each additional strong coupling reduces effect of weaker couplings

Test Results: Fully Embedded 10 Node Line Graph

Ideal Partition appears as the lowest energy solution state

E (-30)	N	State						
-7.40E-03	11	[1 1 1 1 1 -1 -1 -1 -1 -1]						
-7.40E-03	1	[-1 -1 -1 -1 -1 1 1 1 1 1]						
-6.40E-03	29	[1 1 1 1 -1 -1 -1 -1 -1 -1]						
-6.40E-03	3	[111111 -1 -1 -1 -1]						
-6.40E-03	1	[-1 -1 -1 -1 1 1 1 1 1 1]						
-6.40E-03	3	[-1 -1 -1 -1 -1 1 1 1 1]						
-6.00E-03	35	[-1 -1 1 1 1 1 1 -1 -1 -1]						
-6.00E-03	32	[-111111-1-1-1-1]						

Dense Hamiltonian Coupling Factors: Strong: -1 Adjacent: .0002 Weak: .0005

Small differences in solution state energies due to large relative weight of strong couplings

Future Quantum Annealers with higher connectivity and more qubits may make Direct Embedding more realistic

Outline

D-Wave Machine

Research Results to Date

Applications

Summary

.

Summary

After little over a decade, adiabatic quantum annealing is moving from theory to practice.

Today's D-Wave system raises a variety of research questions that USC, Lockheed Martin, and our colleagues are jointly investigating

Future D-Wave systems might soon be the most powerful on Earth for a range of problems

What those might be, and how to program them, are still open research problems.

Open Research Problems

Why does the D-Wave even work?

Its an open system How much quantum speedup will there be? Any? If so, on what problems? What applications will it ultimately solve? We've had half a century to find competing heuristics How should you program it? Specifically excluded from recent research programs What should the topology be? Reduce critical scaling limitation Other adiabatic quantum systems will face these. These questions are all bigger than just D-Wave

Back Up

Case Study: 4-city Traveling Salesman (LM 2011)

- 4 city directed Traveling Salesman Problem
- 12 logical qubits (1 per directed link)
 - Embeddable on 92-qubit processor
- Found optimal solution in 10% of iterations

nk	Costs		<u>Constraints</u>											
			x12	x13	x14	x21	x23	x24	x31	x32	x34	x41	x42	x43
c12	5.86	x12	-2	2	2	1	0	0	0	2	0	0	2	0
c13	9.70	×13	0	-2	2	0	2	0	1	0	0	0	0	2
c14	5.51	×14	0	0	-2	0	0	2	0	0	2	1	0	0
c21	6.75	x21	0	0	0	-2	2	2	2	0	0	2	0	0
c23	3.91	x23	0	0	0	0	-2	2	0	1	0	0	0	2
c24	8.18	×24	0	0	0	0	0	-2	0	0	2	0	1	0
c31	1.31	x31	0	0	0	0	0	0	-2	2	2	2	0	0
c32	1.31	x32	0	0	0	0	0	0	0	-2	2	0	2	0
c34	4.39	x34	0	0	0	0	0	0	0	0	-2	0	0	1
c41	5.86	x41	0	0	0	0	0	0	0	0	0	-2	2	2
c42	3.30	x42	0	0	0	0	0	0	0	0	0	0	-2	2
c43	5.51	×43	0	0	0	0	0	0	0	0	0	0	0	-2

Energy distribution of annealing iterations

Slide Courtesy of Steve Adachi, Lockheed Martin

Advanced Technology & Innovation

Case Study: Protein Folding (Harvard/D-Wave)

Ref: A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose & A. Aspuru-Guzik, "Finding low-energy conformations of lattice protein models by quantum annealing," doi:10.1038/srep00571.

Slide Courtesy of Steve Adachi, Lockheed Martin

Advanced Technology & Innovation