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The End of Dennard Scaling
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Need More Capability?

Massive Scaling
Tianhe-2 (3M cores)

B i

Exploit a New Phenomenon
D-Wave Quantum Annealer Application Specific Systems
D.E. Shaw Research Anton
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Adiabatic Quantum Annealing

Problem: find the ground state of

Ismg Zh6+2]66

(i,7)eE
Shown by Barahona (1982) to be NP-hard in 2D, | i = h], = (.

Use adiabatic interpolation from transverse field (arhietal., 2000)

10+

H(t)= A(t)EG +B(HH,

0.2 04 06 0.8 101,

Graph Embedding implemented on DW 1 via Chimera graph retains NP-hardness (V. Choi, 2010)
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D-Wave System Collage
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Eight Qubit Unit Cell

Images courtesy D-Wave

USC Viterbi

School of Engineering University of Southern California




Chimera Graph Topology

The topology of the D-Wave Two
at the USC — Lockheed Martin % ;
Quantum Computing Center. %
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D-Wave’'s Version of “Moore’s Law”
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Quantum Signature: Degenerate Ising Hamiltonian

+/-1 -
° Higing = E hjgj + E ijaj o
(7,k)EE
1 hj = -1, hj = 1, Jik = -1

e

@ +/-1

17-fold degenerate ground space:
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Simulated Annealing At Several Speeds

Probability vs. temperature for different speeds
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Simulated Quantum Annealing
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Quantum Signature: the isolated state is suppressed ©

Reference: S. Boixo,, T. Albash, F.M. Spedalieri, N. Chancello, D.A. Lidar, Nature Comm. 4, 2067 (2013).
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Scalable Quantum Signature
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Witness for Entanglement

Collaboration with D-Wave

Only they can take the tunneling microscopy measurements needed
Allows us to infer the value of an entanglement witness
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Performance of Classical Exact Solvers

103 EN T T T T T T T
| o—o Ising CPLEX NF T
(| & Ising CPLEX F
102k e—e |sing exact BP |
| = QUBO CPLEX ]
101 2 .
=
(O]
£
10O 3 E
10t} 1
10'2 | | | | | | | |
vE) V32 V2 V128 V200 V288 V392 V512
size

USC Viterbi

School of Engineering University of Southern California




Quantum Annealing vs. Simulated Annealing

107 Benchmarks with 2range glasses without fields
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Quantum Annealing vs. Simulated Annealing

; Benchmarks with 2range glasses without fields

| e - QA 1%
107 o o QA 10%
10°FH & ® QA 25%
| e e QA50%
10°Fle e QA 75%
3[|e o QA95%}

107 f
" | * - QA99%
= 10°F @ _-e- & -
GE) :gf—;£8=:8iiﬂ
£ 10'F
= [ SA 1%
10° -~ o |-
/ SA 10%
1015 / ~/ SAZS%’;
N A/ oo SA50% |]
10 // —e SA 75% |}
103 oo SA 95% ]
/ e SA99%|
10-41 | | | | | ]
vE) V32 V72 V128 V200 V288 V392 V512

size

D-Wave 2 vs. Nvidia Kepler GPU (USC & ETH)

USC Viterbi

School of Engineering University of Southern California




Hard problems motivated by satisfiability

Random walk to
create frustrated

a b loops that respect
a planted solution

Frustration

Itay Hen, Performance of D-Wave Two on
Problems with Planted Solutions, AQC 2014
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Hard problems for multiple heuristics

0 “at least once with 99% chance”- a comparison. D-Wave
: . Selby
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Performance on hard problems

0 “average time to solution” scaling results. D-Wave
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Speedup relative to what?

Better heuristics?
Selby motivated by earlier comparisons with simulated annealing

Multiple Xeon cores?
SAT solvers often don’t scale well
MPI overheads are O(us).

Not the only way to use CMOS

FPGA circuits (Victor Martin-Major’s earlier Janus talk)
ASICs ala Anton (Mark Moraes’s talk)

Full custom circuits

“D-Wave problem”

Best case for D-Wave
Not at all clear that this will extend to real applications
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What Problems Might be Amenable?

Traveling salesman Logistics, vehicle routing
Minimum Steiner tree Circuit layout, network design
Graph coloring Scheduling, register allocation
MAX-CLIQUE Social networks, bioinformatics
QUBO Machine learning

Integer Linear Programming Natural language processing
Sub-graph isomorphism Cheminformatics, drug discovery
Motion planning Robotics

MAX-2SAT Artificial intelligence

NP-complete problems from Wikipedia
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On-Going Applications Research

Verification and Validation
Model checking for DARPA
Cyber physical system V&V at Lockheed Martin

Optimization of System Design
Collaboration with Lockheed Martin

Image Processing

Image registration at D-Wave

Image recognition at Google

Organic photovoltaic triage at Harvard
Missile Defense
Closely-spaced objects at Aerospace

USC Viterbi

School of Engineering UIliVCl‘Sit_V of Southern California



Model Checking

e Given a;

- Finite transition system |V

- A temporal property p
 The model checking problem:
- Does M satisfy p?
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Abstract Model
No Bug
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Nested Dissection Reordering

Best reordering algorithm for many linear systems

Widely used in practice today
Available in packages such as Metis and Scotch

Basic ND algorithm

Find a small separator to partition the matrix into two halves
In general, this is an NP-complete problem

Refine the separator, “straightening” it
minimize separator length
balance the two subgraphs

Recursively partition the remaining subgraphs
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Many Partitioning Heuristics Available

Ones I know used Ones I don t know of
Level Sets Simulated Annealing
George and Liu

Ashcraft and Grimes Quantum Annealing

Moment of Inertia
Fiduccia-Mattheyses

Spectral Bisection
Fiedler vectors
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Ising Models for NP-hard Problems

Graph bisection can be described as an Ising spin glass
J Phys A19 1605 (1986)

Since then, Ising models for many other problems have
been found too
arxiv: 1302.5843

The general goal: find a cost function H (Hamiltonian)
whose solutions correspond to the hard problem
Create energy penalties for suboptimal solutions
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Ising model for Graph Partitioning

(Za) By L : -

eV 1jeEl

penalty B for
penalize conﬁg each edge btwn
that doesn’t bisect two subsets

Partition the graph into two domains: spin up or down
Add energy penalty A to configurations that don’t bisect
Add energy penalty B to edges in the separator

Finds an edge separator
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Toy problem
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All possible solutions
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Direct embedding of Ising Model to Chimeral Graph

Embedded 10-Node Line

m » de 88 @ ode b Use strong couplings
3 e & ® Couoles Cubi between qubits to create
e o0 e virtual nodes with full

' . = Strong Couplin .
#"% @?ﬂ o . " connectivity
Inactive Qubit

E

Strong coupling forces coupled qubits into the
same state for low energy solutions

Pros: Allows embedding of any graph topology with
N nodes, no classical post-processing necessary

Cons: Limited by number of qubits, Mapping problem
to chimeral graph for large N is NP-Hard, Each
additional strong coupling reduces effect of weaker
couplings
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Test Results: Fully Embedded 10 Node Line Graph

Ideal Partition appears as the lowest energy solution state

Dense Hamiltonian
Coupling Factors:

-7.40E-03 11 [11111-1-1-1-1-1] Strong: -1

-7.40E-03 1 [1-1-1-1-111111] Adjacent: .0002
Weak: .0005

-6.40E-03 29 [1111-1-1-1-1-1-1]

-6.40E-03 3 (111111 -1-1-1-1] Small differences in

-6.40E-03 [(1-1-1-1111111] solution state

-6.40E-03 3 [(1-1-1-1-1-11111] energies due to large

-6.00E-03 35 [(1-111111-1-1-1] relative weight of

-6.00E-03 32 [(111111-1-1-1-1] strong couplings

Future Quantum Annealers with higher connectivity and more
qubits may make Direct Embedding more realistic
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Summary

After little over a decade, adiabatic quantum
annealing is moving from theory to practice.

Today’s D-Wave system raises a variety of research
guestions that USC, Lockheed Martin, and our
colleagues are jointly investigating

Future D-Wave systems might soon be the most
powerful on Earth for arange of problems

What those might be, and how to program them, are
still open research problems.
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Open Research Problems

Why does the D-Wave even work?

Its an open system

How much quantum speedup will there be?
Any? If so, on what problems?

What applications will it ultimately solve?
We've had half a century to find competing heuristics
How should you program it?

Specifically excluded from recent research programs
What should the topology be?

Reduce critical scaling limitation

Other adiabatic quantum systems will face these.
These questions are all bigger than just D-Wave
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Case Study: 4-city Traveling Salesman (LM 2011) A4

* 4 city directed Traveling Salesman Problem
* 12 logical qubits (1 per directed link)

* Embeddable on 92-qubit processor
* Found optimal solution in 10% of iterations

Link Costs Constraints Energy distribution of annealing iterations
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Case Study: Protein Folding (Harvard/D-Wave) 4

1
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0.11%, 0.05% 1.49%, 0.18% 8.76%, 0.01% 1.10%, 0.31% T.60%, 1.00% 13.59%, 0.41%
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* Simplified 2-dim lattice model i@ | 3 2 $3 Zﬁ . 5 -
' w @

of protein folding O | 4 b
« Modeled a 6 amino acid chain E 0100100000 0100100010 0100101000 0100101010
b 415%, 0.25% 3.81%, 0.03% 13.71%, 0.51% 15.52%, 0.05%
=
w

ol oese o3t o1 "33

.r
® Model has 18 logical ra
qubits ,

‘ 0100011101 0100011111 0100101011 0101001000
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+ Embedding took 81 | @z
. - 2
phys|ca| qub|ts @-@—m Mm -0
g
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60%, 0.14%  2.82%, <0.01% 3.29% 0.51% 0.25%
-5 <+ @ig m
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AL6E% D6 49.34%

o
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17.67%, 0.13%

* Found correct ground state on
13 of 10,000 measurements ! (0.13%)

Ref: A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose & A. Aspuru-Guzik, “Finding low-energy conformations
of laftice protein models by quantum annealing,” doi:10.1038/srep00571.
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