Covergence of Extreme Big Data and HPC

Satoshi Matsuoka Professor Global Scientific Information and Computing (GSIC) Center Tokyo Institute of Technology Fellow, Association for Computing Machinery (ACM)

> HPC2014 Italy Cetraro, Italy 20140707

GSIC

Total 17.1 Petaflops SFP 5.76 Petaflops DFP

Tokyo Institute of Technology

办

K Computer 11.4 Petaflops SFP/DFP

名古屋大学

All University Centers

COMBINED 9 Retaflops SFP

man on vier

大阪大

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology

0. Extreme Big Data Backgroud

"Is Big Data really that Big?"

Extreme Big Data Example in Social NW rates and volumes are immense

- Facebook:
- Slide courtecy David A. Bader @ Georgia Tech
- ~1 billion users
- average 130 friends
- 30 billion pieces of content shared / month
- Twitter:
 - 500 million active users
 - 340 million tweets / day
- Internet 100s of exabytes / year
 - 300 million new websites per year
 - 48 hours of video to You Tube per minute
 - 30,000 YouTube videos played per second

Continuous Billion-Scale Social Simulation with Real-Time Streaming Data (Toyotaro Suzumura/IBM-Tokyo Tech)

- Applications
 - Target Area: Planet (Open Street Map)
 - 7 billion people
- Input Data
 - Road Network (Open Street Map) for Planet: 300 GB (XML)
 - Trip data for 7 billion people
 - 10 KB (1 trip) x 7 billion = 70 TB
 - Real-Time Streaming Data (e.g. Social sensor, physical data)
- Simulated Output for 1 Iteration
 - **700 TB**

Extreme Big Data in Genomics

Future "Extreme Big Data"

- NOT mining Tbytes Silo Data
- Peta~Zetabytes of Data
- Ultra High-BW Data Stream
- Highly Unstructured, Irregular
- Complex correlations between data from multiple sources
- Extreme Capacity, Bandwidth, Compute All Required

We will have tons of unknown genes

Metagenome analysis

[Slide Courtesy Yutaka Akiyama @ Tokyo Tech.]

- Directly sequencing uncultured microbiomes obtained from target environment and analyzing the sequence data
 - Finding novel genes from unculturable microorganism
 - Elucidating composition of species/genes of environments

Results from Akiyama group@Tokyo Tech

Ultra high-sensitive "big data" metagenome sequence analysis of human oral microbiome

- Required >1 million node*hour product on K-computer
- World's most sensitive sequence analysis (based on amino acid similarity matrix)
- Discovered at least three microbiome clusters with <u>functional</u> differences. (Integrated 422 experiment samples taken from 9 different oral parts)

572.8 M Reads / hour 82,944 node (663,552 Cores) K-computer (2012)

Extremely Large Graphs

- The extremely large-scale graphs that have recently emerged in various application fields
 - US Road network : 58 million edges
 - Twitter fellow-ship : 1.47 billion edges
 - Neuronal network : 100 trillion edges

61.6 million nodes & 1.47 billion edges

• Fast and scalable graph processing by using HPC Neuronal network @ EU Human Brain Project

89 billion nodes & 100 trillion edges

US road network 24 million nodes & 58 million edges

Cyber-security 15 billion log entries / day

Image: Illustration by Mirko Ilic

Graph500 "Big Data" Benchmark

Kronecker graph BSP Problem

GRAP

 G_4 adjacency matrix

amazon.com

November 15, 2010

Graph 500 Takes Aim at a New Kind of HPC Richard Murphy (Sandia NL => Micron)

" I expect that this ranking may at times look very different from the TOP500 list. Cloud architectures will almost certainly dominate a major chunk of part of the list."

The 4th Graph500 List (Jun2012) TSUBAME #4 w/GPUs

Toyotaro Suzumura, Koji Ueno, Tokyo Institute of Technology

Rank	Installation Site	Machine	Number of nodes	Number of cores	Problem scale	GTEPS
1	DOE/SC/Argonne National Laboratory	Mira/BlueGene/Q	32768	524288	38	3541.00
E.	LLNL	Sequoia/Blue Gene/Q	32768	524288	38	3541.00
2	DARPA Trial Subset, IBM Development Engineering	Power 775, POWER7 8C 3.836 GHz	1024	32768	35	508.05
3	Information Technology Center, The University of Tokyo	Oakleaf-FX (Fujitsu PRIMEHPC FX 10)	4800	76800	38	328.10
¢.	GSIC Center, Tokyo Institute of Technology	TSUBAME	1366	16392	35	317.09
5	Brookhaven National Laboratory	BLUE GENE/Q	1024	16384	34	294.29 BP Date: Flatters US90: 60
6	DOE/SC/Argonne National Laboratory	Vesta/BlueGene/Q	1024	16394	34	292.36 at light Lang of Languages at 50
le	ality: T	op500 S	up	erc	om	puters Domina
	Labs	"sand-bridge"	.			of old (Tsumme2 0)

Top Supercomputers vs. Global IDC

K Computer (#1 2011-12) Riken-AICS Fujitsu Sparc VIII-fx Venus CPU 88,000 nodes, 800,000CPU cores ~11 Petaflops (10¹⁶) 1.4 Petabyte memory, 13 MW Power 864 racks、3000m²

Tianhe2 (#1 2013) China Gwanjou 48,000 KNC Xeon Phi + 36,000 Ivy Bridge Xeon 18,000 nodes, >3 Million CPU cores 54 Petaflops (10¹⁶) 0.8 Petabyte memory, 20 MW Power ??? racks, ???m²

C.f. Amazon ~= 500,000 Nodes, ~6 million Cores??

#1 2012 IBM BlueGene/Q "Sequoia"
Lawrence Livermore National Lap
IBM PowerPC System-On-Chip
98,000 nodes, 1.57million Cores
~20 Petaflops
1.6 Petabytes, 8MW, 96 racks

Supercomputer Tokyo Tech. Tsubame 2.0 #4 Top500 (2010)

A Major Northern Japanese Cloud Datacenter (2013)

<u>~1500 nodes compute & storage</u>
Full Bisection Multi-Rail
Optical Network
Injection 80GBps/Node
Bisection 220Terabps

8 zones, Total <u>5600 nodes,</u> Injection 1GBps/Node Bisection 160Gigabps

But what does "220Tbps" mean?

Global IP Traffic, 2011-2016 (Source Cicso)							
	2011	2012	2013	2014	2015	2016	CAGR 2011-2016
By Type	(PB per M	Month / A	verage B	itrate in 1	bps)		
Fixed	23,288	32,990	40,587	50,888	64,349	81,347	28%
Internet	71.9	101.8	125.3	157.1	198.6	251.1	
Manage	6,849	9,199	11,846	13,925	16,085	18,131	21%
dIP	21.1	28.4	36.6	43.0	49.6	56.0	
Mobile	597	1,252	2,379	4,215	6,896	10,804	78%
data	1.8	3.9	7.3	13.0	21.3	33.3	
Total IP	30,734	43,441	54,812	69,028	87,331 }1	-110,282	29%
traffic	94.9	134.1	169.2	213.0	269.5	340.4	

TSUBAME2.0 Network has TWICE the capacity of the <u>Global Internet</u>, being used by 2.1 Billion users

Breakdown of BFS execution on K computer

Now, it is a communication intensive benchmark!!!

"Big Data Assimilation" in Weather

High-resolution simulation

Combination of next-generation technologies

"Big Data Assimilation"

Improving simulations

Collecting Atmospheric Data

Global continuous collection

Variety of sensors, stationary and mobile

Flow chart with exa-scale data size

In fact we will not be producing sufficient strorage!

- Worldwide HDD production: 550mil units and declining => ~1 Yottabytes/year
 - ► Global storage capacity 3~4 Yottabytes?
- Slow capacity CAGR predicted: <u>15%</u>
- Flash increasing but still 10% of HDD
- C.f. Top500/Exascale CAGR 100%!
- Suppose 5-100 bytes/flop
 - Exascale machine 5~100 Exabytes HDD (&Tape)
 500K-10 mil HDDs&Tape, \$50mil-\$1bil
 - Conclusion: can't store data, need to process them

Extreme Big Data (EBD) 2013-2018 Research Scheme Future Non-Silo Extreme Big Data Apps

Very low BW & Efficiencty

Supercomputers Compute&Batch-Oriented

Japanese Big Data-HPC Convergence Projects

- JST CREST Post Petascale (PD: Akinori Yonezawa)
 - Katsuki Fujisawa (Univ. Kyushu): "Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers"
 - Toshio Endo(Tokyo Tech.) "Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era"
 - Osamu Tatebe (Univ. Tsukuba): "System Software for Post Petascale Data Intensive Science"

• JST CREST "Big Data" (PD: M. Kitsuregawa & Y. Tanaka)

- Takemasa Miyoshi (Riken AICS): Innovating "Big Data Assimilation" technology for revolutionizing very-short-range severe weather prediction
- Other Projects
 - S. Matsuoka (Tokyo Tech.) JSPS Grant-in-Aid S "Billion-way Resiliency"
 - TSUBAME3.0 !

1. Extreme Big Data Machine Architecture

High Bandwidth **High Capacity Deep Memory Hiearchy** via NVMs & Next-Gen **Optical Interconnect**

TSUBAME2.0/2.5 Storage Overview

Storage 11PB (7PB HDD, 4PB Tape)

TSUBAME2.0/2.5 Storage Overview

Storage 11PB (7PB HDD, 4PB Tape)

TSUBAME-KFC (Kepler Fluid Cooling)

A TSUBAME3.0 prototype system with advanced next gen cooling 40 compute nodes are oil-submerged 1200 liters of oil (Exxon PAO ~1 ton) #1 2013/11& 2014/6 Green 500

Single Node5.26 TFLOPS DFPSystem (40 nodes)210.61 TFLOPS DFP
630TFlops SFP

Storage (3SSDs/node)

1.2TBytes SSDs/Node Total 50TBytes ~50GB/s BW

EBD- I/O (Many-core I/O)

0

0

5

10

mSATAs

15

Preliminary I/O Evaluation on GPU and NVRAM

How to design local storage for next-gen supercomputers ?

- Local I/O prototype using 16 mSATA SSDs

20

0

0.2740.547 1.09 2.19 4.38 8.75 17.5

Matrix Size [GB]

35

70

140

Tsubame 4: 2020- DRAM+NVM+CPU with 3D/2.5D Die Stacking -The Ultimate Convergence of BD and EC-

Direct Chip-Chip Interconnect with planar VCSEL optics

EBD Interconnects (NII Group)

2. Extreme Big Data Algorithms

Graphs, Sorting, Clustering, Spatial Data...

JST CREST: Advanced Computing and Optimization Infrastructure for Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers

- Innovative Algorithms and implementations
 - Optimization, Searching, Clustering, Network flow, etc.
- Extreme Big Graph Data for emerging applications
 - 2³⁰ ~ 2⁴² nodes and 2⁴⁰ ~ 2⁴⁶ edges
 - **Over 1M threads** are required for real-time analysis
- Many applications on post peta-scale supercomputers
 - Analyzing massive cyber security and social networks
 - Optimizing smart grid networks
 - Health care and medical science
 - Understanding complex life system

- Example: Symbolic Network
 - Human Brain Project http://www.humanbrainproject.eu/
 - Understanding the human brain is one of the greatest challenges facing 21st century science
 - 89 billion neurons(nodes)
 - 1 trillion connections(edges)
 - Over 10¹⁷ bytes memory(storage) and 10¹⁸ Flops for brain simulator

The Graph500 – June 2014 K Computer and TSUBAME 2.0 & 2.5

Graph500 ranking history for TSUBAME2.0 and 2.5

List	Rank	GTEPS	Implementation
November 2011	3	99.858	Top-down only
June 2012	4	317.09	GPU
November 2012	20	462.25	GPU
June 2014	12	1280	Efficient hybrid

*Every score is obtained using TSUBAME2.0 1366 nodes or TSUBAME 2.5 1024 nodes

> Graph500 ranking history for K Computer

BFS performance on TSUBAME2.0 and 2.5

List	Rank	GTEPS	Implementation
November 2013	4	5524.12	Top-down only
June 2014	1	17977.05	Efficient hybrid

Large Scale Graph Processing Using NVM

3. Experiment

The Green Graph500 list : Nov. 2013

<complex-block>

TSUBAME-KFC 6.72 MTEPS/W (44.01 GTEPS)

SONY Xperia-A-SO-04E 153 MTEPS/W (0.48 GTEPS)

http://green.graph500.org

- Measures power-efficiency using **TEPS/W** ratio
- Results on various systems such as TSUBAME-KFC Cluster and Android mobiles

Big Data category

R	ank	MTEPS/W	Site	Machine	G500 rank	Scale	GTEPS	Nodes
	1	6.72	Tokyo Institute of Technology	TSUBAME KFC	47	32	44.01	32
	2	5.41	Forschungszentrum Julich (FZJ)	JUQUEEN	3	38	5848	16384
	3	4.42	Argonne National Laboratory	DOE/SC/ANL Mira	2	40	14328	32768
	4	4.35	Tokyo Institute of Technology	EBD-RH5885v2	96	30	3.67	1
	<u>5</u>	3.55	Lawrence Livermore National Laboratory	DOE/NNSA/LLNL Sequoia	1	40	15363	65536

Small Data category

Rank	MTEPS/W	Site	Machine	G500 rank	Scale	GTEPS	Nodes
1	153.17	Chuo University	GraphCREST-Xperia-A-SO-04E	143	20	0.478	1
2	129.63	Tokyo Institute of Technology	GraphCREST-NEXUS7-2013	141	20	0.534	1
3	73.57	University of Tsukuba	kitty6	58	25	17.207	1
4	64.12	Chuo University	GraphCREST-Tegra3	150	20	0.154	1
5	53.82	Chuo University	GraphCREST-Intel-NUC	124	23	1.082	1

Results : BFS Performance

The Graph 500 2014 June DRAM + NVM model

	MEM-CREST Node #2 (Supermicro 2027GR-TRF)	GraphCrest Node #1	EBD-RH5885v2 (Huawei Tecal RH5885 V2)
DRAM	128 GB	256 GB	1024 GB
NVM	ioDrive2 1.2 TB × 2	EBD-I/O 2TB × 2	 Tecal ES3000 800GBx2,1.2TBx2 EBD-I/O 4TB × 2
SCALE (Total Data Size)	30 (500GB)	31 (1TB)	33 (4TB)
GTEPS	7.98	13.80	3.11
MTEPS / W	28.88	35.21	3.42

~ x6 better than Nov. 2013 #1 !

Sorting for EBD using single node to the utmost capacity

- Sorting long/variable length keys (strings)
- Implementations for GPUs and multi /many-core CPUs
- Hybrid parallelization scheme combining data-parallel and task-parallel stages
- Trimming keys to reduce host-to-device communication overheads
- Up to 100 million string keys per second

Sorting

One of the fundamental primitives Extremely well studied Variety of data types, sizes, hardware architectures and characteristics leave lots of space for improvement.

apple MSD radix sort apricot Don't have to examine banana all characters kiwi Processing textual data (e.g. corpus linguistics) High efficiency on small alphabets Computational genomics (A,C,G,T)

Sorting for EBD Plugging in GPUs for large-scale sorting

3. Extreme Big Data Programming, DSLs, Libraries, and APIs

Existing Abstractions made Extreme (MapReduce, Pregel) + New Abstractions for **Extreme (Communication Reducing Algorithms)**

Software Technology that Deals with Deeper Memory Hierarchy in Post-petascale Era JST-CREST project, 2012-2018, PI Toshio Endo

Supporting Larger domains than GPU device memory for Stencil Simulations

Temporal Blocking (TB) for Comm. Avoiding

- Performs multiple updates on a small block, before proceeding to the next block
 - Originally proposed to improve cache locality [Kowarschik 04] [Datta 08]

Simulate time

Version 1

Version 2

Redundant computation is introduced due to data dependency with neighbor

Redundancy can be removed when blocks are computed sequentially [Demmels 12]

Multi-level TB to reduce both

- PCle traffic
- device memory traffic

Single GPU Performance

3D 7point stencil on a K20X GPU (6GB GPU mem)

 With optimized TB, 10x larger domain size is successfully used with little overhead!!!

→ A step towards extremely fast&big simulations

Problem: Programming Cost

- Communication reducing algorithms efficiently support larger domains
- Programming cost is the issue
 - Complex loop structure, complex border handling

- Reducing programming cost by using system software supporting memory hierarchy
 - HHRT (Hybrid Hierarchical Runtime)
 - Physis DSL, by Maruyama, RIKEN

Memory Hierarchy Management with Runtime Libraries

HHRT (Hybrid hierarchical RT) is for GPU supercomputers and MPI+CUDA user applications

- HHRT provides MPI and CUDA compatible APIs
- # of MPI processes > # of GPUs
 - Several processes share a GPU

- HHRT supports memory swapping between GPU and host mem at granuarity of processes
- Similar to NVIDIA UVM, but works well with communication reducing algorithms

HHRT Comm. Reducing Results Faster **Beyond GPU memory efficient** execution w/ moderate programming cost 3D 7point stencil on a Weak scalability on TSUBAME2.5 single K20X GPU Small: 3.4GB per GPU Large: "16GB" per GPU (>6GB!) 140 20 120 **2beed (GFlops)** 80 60 40 → Small - Large 15 peed (TFlops 10 40 5 **14TFlops with** 20 **3TB Problem** 0 0 10 20 0 30 50 100 150 200 $\mathbf{0}$ **Problem Size (GB)** The number of GPUs Larger

Hamar (Highly Accelerated Map Reduce) [Matsuoka Team- Sato, Shirahata et.al.]

- A software framework for large-scale supercomputers w/ many-core accelerators and local NVM devices
 - Abstraction for deepening memory hierarchy
 - Device memory on GPUs, DRAM, Flash devices, etc.
- Features
 - Object-oriented
 - C++-based implementation
 - Easy adaptation to modern commodity many-core accelerator/Flash devices w/ SDKs
 CUDA, OpenNVM, etc.
 - Weak-scaling over 1000 GPUs
 - TSUBAME2
 - Out-of-core GPU data management
 - Optimized data streaming between device/host memory
 - GPU-based external sorting
 - Optimized data formats for many-core accelerators
 - Similar to JDS format

Hamar Overview

Map/Reduce Implementation

- Optimizations for GPU accelerators
 - Assign a warp (32 threads) per key for avoiding warp divergence in Map/Reduce
 - Overlapping computation on GPU and data transfer between CPU and GPU
 - Out-of-core GPU Sorting Algorithm

Weak Scaling Performance

- PageRank application on TSUBAME 2.5
- Data size is larger than GPU memory capacity

Existing Graph Analytics Libraries

Single Node

- igraph (R package)
- GraphLab/GraphChi (Carnegie Mellon University and Start-up, C++)

Distributed Systems

– MPI-based libraries

- PBGL2 (Parallel Boost Graph Library, C++) [Gregor, Oopsla 2005]
- ParMetis (dedicated for parallel graph partitioning, C+), etc

Hadoop-based libraries

- Apache Giraph (Pregel Model, Java)
- PEGASUS (Generalized Iterative Sparse Matrix Vector Mult CMU), etc
- GPS (Graph Processing System Pregel Model, Stanford, Java + NIO)
- Distributed Graphlab (CMU)

ScaleGraph Library

Distributed Systems

- Many existing graph analytics libraries
 - Single Node
 - igraph, GraphLab/GraphChi, ...

- Apache Giraph, PBGL2, PEGASUS, GPS, Distributed Graphlab, ...
- However, they are not optimized for the state of the art hardware.
 - High-speed network, Multi-core CPUs, NVRAM
- Create an open source Highly Scalable Large Scale Graph Analytics Library beyond the scale of billions of vertices and edges on Distributed Systems
- Grand Challenge: Peta byte scale graph analysis
 - 2⁴² vertices and 2⁴⁶ edges (1.1PB) using 100TB DRAM and 5PB NVRAM.

URL: http://www.scalegraph.org/

ScaleGraph Architecture Design

- Based on our extended X10
 - X10 is a new parallel distributed programming language.
- Fully utilizing MPI collective communication
- Native support for hybrid (MPI and multi-threading) parallelism
- XPregel: Graph processing framework
 - Optimized message communication and Simple API
- Rich graph algorithms

XPregel – X10-based Pregel-like Graph Programming System for convergent architectures

XPregel optimizations on supercomputers

- 1. Utilize MPI collective communication.
- 2. Avoid serialization, which enables utilizing fast supercomputer interconnects
- 3. Destination of messages computed by a simple bit manipulation thanks to vertex id renumbering.
- 4. Optimized message communication when all vertices send the same message to all the neighbor vertices.
- 5. Simple API in X10 language.

Performance Evaluation

Performance Summary for ScaleGraph 2.2

- Artificial big graph that follows various features of Social Network
 - Largest data : 4.3 billion vertices and 68.7 billion edges (RMAT : Scale 32, 128 nodes)
 - PageRank : 16.7 seconds for 1 iteration
 - HyperANF (B=5) = 71 seconds for 1 iteration
- Twitter Graph (0.47 billion vertices vertices and 7 billion vertices – around Scale 28.8)
 - PageRank (128 nodes): 2.56 seconds for 1 iteration
 - Spectral Clustering (128 nodes) : 1,839 seconds
 - HyperANF (B=5, 128 nodes): 28 seconds for 1 iteration
 - Degree Distribution (128 nodes): 128 seconds
- We will support out-of-core processing with external memory (NVRAM) in the future

4. Extreme Big Data – System Software Software, Distributed Objects

Distribution, Instrumentation, Scaling, Resilience, Bandwidth Reduction, , ...

Extreme scale I/O for burst buffers [w/LLNL, CCGrid2014 Best Paper]

• Provide POSIX I/O interfaces

- open, read, write and close
- Client can open any files on any servers
 - open("hostname:/path/to/file", mode)
- IBIO use ibverbs for communication between clients and servers
 - Exploit network bandwidth of infiniBand

IBIO write

Extreme scale resilience modeling

• To find out the best checkpoint/restart strategy for systems with burst buffers, we model checkpointing strategies

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Nonblocking Checkpointing System", SC12

EBD I/O performance and the overall efficiency

R&D of EDB Distributed Object Store (co-PI: Osamu Tatebe, U-Tsukuba)

- Key design issues for Scaled-out IOPS and I/O bandwidth
 - Scalable distributed MDS (1M IOPS Object Creation)
 - High Performance local object store
 - Efficient parallel access (100 TB/s) and parallel query

PPMDS – distributed Scale-out MDS [Hiraga & Tatebe, U-Tsukuba]

Target: Scale-out distributed MDS for O(1M) IOPS

Problems:

- Single MDS does not scale out
- Parallel file creations in the same directory require lock

Features of PPMDS:

- Distributed MDS
- Lock is not required for parallel file creations in the same directory by data management of parent inumber and entry name
- Nonblocking distributed transaction based on Dynamic Software Transaction Memory (DSTM)

PPMDS – distributed Scale-out MDS Preliminary Performance

- GIGA+ [Swapnil Patil et al. FAST'11]
 - Incremental directory partitioning
 - Independent locking in each partition
- skyFS [Jing Xing et al. SC'09]
 - Performance improvement during directory partitioning in GIGA+

- Lustre
 - MT scalability in 2.X
 - Proposed clustered MDS
- PPMDS [Our JST CREST R&D]
 - Shared-nothing KV stores
 - Nonblocking software transactional memory (No lock)

	IOPS (file creates per sec)	#MDS (#core)
GIGA+	98K	32 (256)
skyFS	100K	32 (512)
Lustre 2.4	80K	1 (16)
PPMDS	270K	15 (240)

Design of Object Store for NVM [Takatsu and Tatebe, U-Tsukuba]

- Simplest object store format
 - Fixed size of region (e.g. 2 TB)
 - Large enough to avoid indirect accesses
 - No directory entry
- Reserved base region number assignment reduces the number of locks

Initial performance of NVM Object Store for FusionIO ioDrive

threads

NVM-BPTree [Jabri and Tatebe, U-Tsukuba]

NVM-BPTree is a Key-Value Stores (KVS) running natively over Non-Volatile-Memory (NVM), like flash, supporting range-queries.

- Take advantage of enterprise class NVM new capabilities: atomic writes, huge sparse address space, direct access to NVM device natively as a KVS
 - Leverage NVMKV an Open source KVS API interface for NVM like flash.
- Enable range-queries support for KVS running natively on NVM like fusionio ioDrive
 - Keys stored in a in-memory B+ Tree with negligible overhead for KV pair insertion and retrieval.
- Provide optional persistence to the BPTree structure and also snapshots

International Efforts on Big Data and Extreme Computing Convergence

• Europe, US, China, Japan collaboration

International Exascale Software Project (2009-2012)

Big Data and Extreme Computing (2013-)

TSUBAME4 2021-22 K-in-a-Box Convergent Architecture

1/500 Size, 1/150 Power, 1/500 Cost, x5 DRAM+ NVM

Memory

10 Petaflops, 10 Petabyte Memory (K: 1.5PB), 10K nodes 50GB/s Interconnect (200-300Tbps Bisection BW) (Conceptually similar to HP "The Machine") *Datacenter in a Box Large Datacenter will become "Jurassic"*

EBD: Summary

- Current "Big Data" not so "Big" but Next Gen will be!
- IDC&Clouds inadequate to handle such EBD! -> "CONVERGENCE" a must!
- <u>EBD Projects Objective: Develop fundamental</u> <u>"convergence" EBD systems and infrastructural</u> <u>technologies through "co-designs" with</u> <u>representative EBD applications</u>
 - (1) EBD Convergent Architecture
 - (2) EBD Algorithms
 - (3) EBD Proggramming Abstractions
 - (4) EBD System Software

EBD Convergence will make the current IDCs "Jurassic"