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2013: TSUBAME2.5 No.1 in Japan* in 

Single Precision FP, 17 Petaflops
(*but not in Linpack)

~=

K Computer
11.4 Petaflops SFP/DFP

Total 

17.1 Petaflops SFP

5.76 Petaflops DFP

All University Centers
COMBINED 9 Petaflops SFP

http://www.tohoku.ac.jp/japanese/pub/mark.html
http://www.tohoku.ac.jp/japanese/pub/mark.html
http://www.nagoya-u.ac.jp/
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TSUBAME Evolution

Towards Exascale and Extreme Big Data

Graph 500
No. 3 (2011)

Awards

3.0

25-30PF

2015H2

2.5

Phase1
Fast I/O
250TB
300GB/s
30PB/Day

5.7PF

Phase2
Fast I/O
5~10PB
10TB/s
> 100mil 
iOPs
1ExaB/Day

1TB/s



0. Extreme Big Data 

Backgroud

“Is Big Data really that Big?”
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Extreme Big Data in Genomics

Lincoln Stein, Genome Biology, vol. 11(5), 2010

Sequencing data (bp)/$
becomes x4000 per 5 years

c.f., HPC x33 in 5 years

Impact of new generation sequencers
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[Slide Courtesy Yutaka 
Akiyama @ Tokyo Tech.]

several TB / day / sequencing lab. (2012)

Continuous Billion-Scale Social Simulation with Real-Time 
Streaming Data (Toyotaro Suzumura/IBM-Tokyo Tech)

 Applications
– Target Area: Planet (Open Street 

Map)  
– 7 billion people

 Input Data 
– Road Network (Open Street Map) 

for Planet: 300 GB (XML)  
– Trip data for 7 billion people

• 10 KB (1 trip) x  7 billion =  
70 TB

– Real-Time Streaming Data (e.g. Social 
sensor, physical data) 

 Simulated Output for 1 Iteration

– 700 TB 

Extreme Big Data Example in Social NW
rates and volumes are immense

Slide courtecy David A. Bader 

@ Georgia Tech• Facebook:  
– ~1 billion users

– average 130 friends

– 30 billion pieces of content shared / month

• Twitter:  
– 500 million active users

– 340 million tweets / day

• Internet – 100s of exabytes / year
– 300 million new websites per year

– 48 hours of video to You Tube per minute

– 30,000 YouTube videos played per second

Future “Extreme Big Data”

- NOT mining Tbytes Silo Data

- Peta~Zetabytes of Data
- Ultra High-BW Data Stream
- Highly Unstructured, Irregular
- Complex correlations between 

data from multiple sources
- Extreme Capacity, Bandwidth, 

Compute All Required



We will have tons of unknown genes

• Directly sequencing uncultured microbiomes obtained 
from target environment and analyzing the sequence 
data
– Finding novel genes from unculturable microorganism

– Elucidating composition of species/genes of environments

Human 
body

Sea

Gut microbiome

Examples of microbiome

Soil

Metagenome analysis
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[Slide Courtesy Yutaka 
Akiyama @ Tokyo Tech.]



Results from Akiyama group@Tokyo Tech

Ultra high-sensitive “big data” metagenome
sequence analysis of human oral microbiome

7Oral cavity Oral vestibule Plaque

Metabolic Pathway Map

- Required  > 1 million  node*hour product  on K-computer
- World’s most sensitive sequence analysis  (based on amino acid similarity matrix)

- Discovered  at least three microbiome clusters with functional differences.
(Integrated 422 experiment samples taken from 9 different oral parts)

Oral cavity

Oral vestibule
Plaque

572.8 M Reads / hour 
82,944 node (663,552 Cores)
K-computer (2012)



Extremely Large Graphs
• The extremely large-scale graphs that 

have recently emerged in various 
application fields
– US Road network    :    58 million edges
– Twitter fellow-ship : 1.47 billion edges
– Neuronal network :   100 trillion edges

89 billion nodes & 100 trillion edges
Neuronal network @ EU Human Brain Project

Cyber-security

Twitter

US road network
24 million nodes & 58 million edges 15 billion log entries / day

Social network

• Fast and scalable graph processing by using HPC

61.6 million nodes
&  1.47 billion edges



Graph500 “Big Data” Benchmark
Kronecker graph BSP Problem 

A: 0.57,  B: 0.19

C: 0.19, D: 0.05

November 15, 2010
Graph 500 Takes Aim at a New Kind of HPC
Richard Murphy (Sandia NL => Micron)

“ I expect that this ranking may at times look very 
different from the TOP500 list. Cloud architectures 
will almost certainly dominate a major chunk of 
part of the list.”

The 4th Graph500 List (Jun2012) TSUBAME #4 w/GPUs

#4 (Tsuname2.0)

Toyotaro Suzumura, Koji Ueno, Tokyo Institute of Technology

Reality: Top500 Supercomputers Dominate

No Cloud IDCs at all

TSUBAME2.0 #3(Nov.2011) #4(Jun.2012)



NEC Confidential

Top Supercomputers vs. Global IDC

DARPA study
2020 Exaflop (1018)

100 million~
1 Billion Cores

K Computer (#1 2011-12) Riken-AICS
Fujitsu Sparc VIII-fx Venus CPU 
88,000 nodes, 800,000CPU cores
~11 Petaflops (1016)
1.4 Petabyte memory, 13 MW Power
864 racks、3000m2

C.f. Amazon ~= 500,000 Nodes, ~6 million Cores??

#1 2012 IBM BlueGene/Q “Sequoia” 
Lawrence Livermore National Lab
IBM PowerPC System-On-Chip
98,000 nodes, 1.57million Cores
~20 Petaflops
1.6 Petabytes, 8MW, 96 racks

Tianhe2 (#1 2013) China Gwanjou
48,000 KNC Xeon Phi + 36,000 Ivy 
Bridge Xeon 
18,000 nodes, >3 Million CPU cores
54 Petaflops (1016)
0.8 Petabyte memory, 20 MW Power
??? racks、???m2



A Major Northern Japanese 
Cloud Datacenter (2013)

Juniper EX8208 Juniper EX8208

2 zone switches (Virtual Chassis)

Juniper 
EX4200

Zone (700 nodes)

Juniper 
EX4200

Juniper 
EX4200

Zone (700 nodes)

Juniper 
EX4200

Juniper 
EX4200

Zone (700 nodes)

Juniper 
EX4200

Juniper MX480 Juniper MX480

10GbE10GbE

10GbE

10GbE

LACP

the Internet

8 zones, Total 5600 nodes, 

Injection 1GBps/Node

Bisection 160Gigabps

Advanced Silicon 
Photonics 40G 

single CMOS Die
1490nm DFB
100km Fiber

Supercomputer Tokyo Tech. 
Tsubame 2.0 

#4 Top500 (2010) 

~1500 nodes compute & storage

Full Bisection Multi-Rail 

Optical Network

Injection 80GBps/Node

Bisection 220Terabps

>>
x1000!



NEC Confidential

But what does “220Tbps” mean?

Global IP Traffic, 2011-2016 (Source Cicso)

2011 2012 2013 2014 2015 2016 CAGR
2011-2016

By Type (PB per Month / Average Bitrate in Tbps)

Fixed 

Internet

23,288 32,990 40,587 50,888 64,349 81,347 28%

71.9 101.8 125.3 157.1 198.6 251.1 

Manage

d IP

6,849 9,199 11,846 13,925 16,085 18,131 21%

21.1 28.4 36.6 43.0 49.6 56.0 

Mobile 

data

597 1,252 2,379 4,215 6,896 10,804 78%

1.8 3.9 7.3 13.0 21.3 33.3 

Total IP 

traffic

30,734 43,441 54,812 69,028 87,331 110,282 29%

94.9 134.1 169.2 213.0 269.5 340.4 

TSUBAME2.0 Network has TWICE 
the capacity of the Global Internet,

being used by 2.1 Billion users



Breakdown of BFS execution on K computer

 Now, it is a communication intensive 
benchmark!!!
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waiting.
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“Big Data Assimilation” in Weather

Improving simulations

“Big Data Assimilation”

High-resolution simulation

High-resolution observation

Combination of

next-generation technologies

110300.rf12sel.mov
110300.rf12sel.mov


Collecting Atmospheric Data

Global continuous 

collection

Variety of sensors, 

stationary and mobile

Surface 

station

Weather 

balloon

Aircraft

Satellite

Ship

Buoy

Radar



Flow chart with exa-scale data size

Simulation

DA

Initial State

Simulated State

Observations

(Best estimate)

Sim-to-Obs

conversion

Sim-minus-Obs

~40TB (100 members, 1 time level)

~300TB (100 members, 7 time levels)

~40TB
(100 members, 

1 time level)
~1TB

Challenge in global 

data sharing among 

weather services

~300TB (100 members, 7 time levels)

~100TB
(100 members)

~100TB (100 members)

I/O intensive!

Repetitions of I/O between separate programs

~40TB
(100 members, 

1 time level)



NEC Confidential

In fact we will not be producing 
sufficient strorage!

Worldwide HDD production: 550mil units and 
declining => ~1 Yottabytes/year

Global storage capacity 3~4 Yottabytes?

Slow capacity CAGR predicted: 15%

 Flash increasing but still 10% of HDD

C.f. Top500/Exascale CAGR 100%!

Suppose 5-100 bytes/flop

Exascale machine 5~100 Exabytes HDD (&Tape)

500K-10 mil HDDs&Tape, $50mil-$1bil

Conclusion; can’t store data, need to process them



Extreme Big Data (EBD)
2013-2018 Research Scheme

Supercomputers
Compute&Batch-Oriented

Cloud IDC
Very low BW & Efficiencty

Convergent Architecture (Phases 1~4) 
Large Capacity NVM, High-Bisection NW

PCB

TSV Interposer

High Powered 
Main CPU

Low 
Power 
CPU

DRAM
DRAM
DRAM

NVM/Fla
sh

NVM/Fla
sh

NVM/Fla
sh

Low 
Power 
CPU

DRAM
DRAM
DRAM

NVM/Flas
h

NVM/Flas
h

NVM/Flas
h

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System
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Large Scale 
Metagenomics

Massive Sensors and 
Data Assimilation in 
Weather Prediction

Ultra Large Scale 
Graphs and Social 
Infrastructures

Exascale Big Data HPC 

Co-Design

Future Non-Silo Extreme Big Data Apps

Graph Store

EBD Bag

Co-Design 13/06/06  22 :36日本地図

1/1  ページfile: ///Users/sh irahata/Pictu res/日本地図.svg

1000km
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S

KV
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EBD KVS

Cartesian Plane

Co-Design



Japanese Big Data-HPC 

Convergence Projects
• JST CREST Post Petascale (PD: Akinori Yonezawa)

– Katsuki Fujisawa(Univ. Kyushu): “Advanced Computing and 

Optimization Infrastructure for Extremely Large-Scale Graphs on Post 

Peta-Scale Supercomputers”

– Toshio Endo(Tokyo Tech.) “Software Technology that Deals with 

Deeper Memory Hierarchy in Post-petascale Era”

– Osamu Tatebe (Univ. Tsukuba): “System Software for Post Petascale 

Data Intensive Science”

• JST CREST “Big Data” (PD: M. Kitsuregawa & Y. Tanaka)

– Takemasa Miyoshi (Riken AICS): Innovating "Big Data Assimilation" 

technology for revolutionizing very-short-range severe weather prediction

• Other Projects

– S. Matsuoka (Tokyo Tech.) JSPS Grant-in-Aid S “Billion-way Resiliency”

– TSUBAME3.0 !



1. Extreme Big Data 

Machine Architecture

High Bandwidth

High Capacity

Deep Memory Hiearchy

via NVMs & Next-Gen 

Optical Interconnect



TSUBAME2.0/2.5 Storage Overview

“Global Work Space” #1

SFA10k #5

“Global Work 
Space” #2

“Global Work 
Space” #3 “Scratch” 

SFA10k #4SFA10k #3SFA10k #2SFA10k #1

/work9 /work0 /work19 /gscr0

“cNFS/Clusterd Samba w/ GPFS” 

HOME

System
application

“NFS/CIFS/iSCSI by 
BlueARC” 

HOME

iSCSI

Infiniband QDR Network for LNET and Other Services

SFA10k #6

GPFS#1 GPFS#2 GPFS#3 GPFS#4

Parallel File System Volumes

Home Volumes

QDR IB(×4) × 20 10GbE × 2QDR IB (×4) × 8

Lustre 
GPFS with HSM 

“Thin node SSD” “Fat/Medium node SSD” 

Scratch
HPCI Storage

1.2PB

2.4 PB HDD + 
〜4PB Tape

3.6 PB

600TB
250 TB, 300-500TB/s

Storage 11PB (7PB HDD, 4PB Tape)



TSUBAME2.0/2.5 Storage Overview

“Global Work Space” #1

SFA10k #5

“Global Work 
Space” #2

“Global Work 
Space” #3 “Scratch” 

SFA10k #4SFA10k #3SFA10k #2SFA10k #1

/work9 /work0 /work19 /gscr0

“cNFS/Clusterd Samba w/ GPFS” 

HOME

System
application

“NFS/CIFS/iSCSI by 
BlueARC” 

HOME

iSCSI

Infiniband QDR Network for LNET and Other Services

SFA10k #6

GPFS#1 GPFS#2 GPFS#3 GPFS#4

Parallel File System Volumes

Home Volumes

QDR IB(×4) × 20 10GbE × 2QDR IB (×4) × 8

Lustre 
GPFS with HSM 

“Thin node SSD” “Fat/Medium node SSD” 

Scratch
HPCI Storage

1.2PB

2.4 PB HDD + 
〜4PB Tape

3.6 PB

600TB
250 TB, 300-500GB/s

• Home storage for computing nodes
• Cloud-based campus storage 
services

Concurrent Parallel I/O 
(e.g. MPI-IO)

Fine-grained R/W I/O
(checkpoints, temporary files, 
Big Data processing)

Data transfer service 
between SCs/CCs

Read mostly I/O 
(data-intensive apps, parallel workflow, 
parameter survey)

Long-Term
Backup

Storage 11PB (7PB HDD, 4PB Tape)



TSUBAME-KFC

Single Node 5.26 TFLOPS DFP

System (40 nodes) 210.61 TFLOPS DFP

630TFlops SFP

Storage (3SSDs/node) 1.2TBytes SSDs/Node

Total 50TBytes

~50GB/s BW

A TSUBAME3.0 prototype system 

with advanced next gen cooling

40 compute nodes are oil-submerged

1200 liters of oil (Exxon PAO ~1 ton)

#1 2013/11& 2014/6 Green 500

(Kepler Fluid Cooling)



Preliminary I/O Evaluation on GPU 
and NVRAM

Mother board

RAID card

mSATA mSATA mSATA mSATA
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Matrix Size [GB]

Raw 8 mSATA
8 mSATA RAID0 (1MB)
8 mSATA RAID0 (64KB)

I/O performance of multiple mSATA SSD I/O performance from GPU to multiple mSATA SSDs

〜 7.39 GB/s from 

16 mSATA SSDs (Enabled RAID0)
〜 3.06 GB/s from 

8 mSATA SSDs to GPU

How to design local storage for next-gen supercomputers ?
- Local I/O prototype using 16 mSATA SSDs

・Capacity: 4TB
・Read bandwidth: 8 GB/s
Max Tsubame3 I/O BW: 20 TB/s
(or ~200Tbps ~= All Internet)

EBD- I/O 
(Many-core I/O)

〜320K IOPS 
(3 μ sec)



Tsubame 4: 2020- DRAM+NVM+CPU 
with 3D/2.5D Die Stacking

-The Ultimate Convergence of BD and EC-

PCB

TSV Interposer

High Powered Main CPULow Power CPU

DRAM

DRAM

DRAM

NVM/Flash

NVM/Flash

NVM/Flash

Low Power CPU

DRAM

DRAM

DRAM

NVM/Flash

NVM/Flash

NVM/Flash

2Tbps HBM
4~6HBM Channels

2TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

Direct Chip-Chip Interconnect with planar VCSEL  

optics
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EBD Interconnects (NII Group)
EBD non-uniform 

access
Low latency write/read 

～10μs for 4KB

Our low-jitter topology (<1us)
w/ random shortcuts 

Extreme Big Data Flow

Supercomputers
- Dedicated to neighboring 
and uniform access

Typical Data Centers
-Poor scalability
- 1GbE  + 10GbE

- TCP/IP basis  

Our topology has 
better NW latency [IPDPS14]

K computer



2. Extreme Big Data 
Algorithms

Graphs, Sorting, 
Clustering, Spatial Data…



JST CREST: Advanced Computing and Optimization Infrastructure for 
Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers

 Example: Symbolic Network

 Human Brain Project 
http://www.humanbrainproject.eu/

 Understanding the human brain is one of 
the greatest challenges facing 21st century 
science

 89 billion neurons(nodes)       

 1 trillion connections(edges)

 Over 1017 bytes memory(storage) and 
1018 Flops for brain simulator

• Innovative Algorithms and implementations
• Optimization, Searching, Clustering, Network flow, etc.

• Extreme Big Graph Data for emerging applications
• 230 ~ 242 nodes and 240 ~ 246 edges
• Over 1M threads are required for real-time analysis

• Many applications on post peta-scale supercomputers
• Analyzing massive cyber security and social networks
• Optimizing smart grid networks
• Health care and medical science
• Understanding complex life system



The Graph500 – June 2014 
K Computer and TSUBAME 2.0 & 2.5

List Rank GTEPS Implementation

November 2011 3 99.858 Top-down only

June 2012 4 317.09 GPU

November 2012 20 462.25 GPU

June 2014 12 1280 Efficient hybrid 99.858

317.09

462.25

1280
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Graph500 ranking history for
TSUBAME2.0 and 2.5

BFS performance on 
TSUBAME2.0 and 2.5

*Every score is obtained using TSUBAME2.0 1366 nodes 

or TSUBAME 2.5 1024 nodes

Graph500 ranking history for
K Computer

List Rank GTEPS Implementation

November 2013 4 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid





2. Proposal1. Hybrid-BFS ( Beamer’11 )

Top-down

Bottom-up

CPU Intel Xeon E5-2690 × 2

DRAM 256 GB

NVM EBD-I/O 2TB × 2

Large Scale Graph Processing Using NVM

Source

3. Experiment
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mSATA-SSD

RAID 
Card

RAID Card (RAID 
0)

mSATA
SSD

×
8mSATA

SSD
・・・

www.adaptec.com

www.crucial.com/

4 times larger graph with

6.9 % of degradation

DRAM NVM

Load highly accessed graph data before BFS

Holds full size of GraphHolds highly accessed data



The Green Graph500 list : Nov. 2013

Small Data category

Big Data category

SONY Xperia-A-SO-04E
153 MTEPS/W (0.48 GTEPS)

TSUBAME-KFC
6.72 MTEPS/W (44.01 GTEPS)

http://green.graph500.org
• Measures power-efficiency using TEPS/W ratio

• Results on various systems such as TSUBAME-
KFC Cluster and Android mobiles



Results : BFS Performance

MEM-CREST Node #2
(Supermicro 2027GR-TRF)

GraphCrest Node #1 
EBD-RH5885v2

(Huawei Tecal RH5885 V2)

DRAM 128 GB 256 GB 1024 GB

NVM
ioDrive2 1.2 TB ×
2

EBD-I/O 2TB × 2
• Tecal ES3000

800GBx2,1.2TBx2
• EBD-I/O 4TB × 2

SCALE
(Total Data Size)

30
(500GB)

31
(1TB)

33
(4TB)

GTEPS 7.98 13.80 3.11

MTEPS / W 28.88 35.21 3.42

The Graph 500 2014 June
DRAM + NVM model

~ x6 better than Nov. 2013 #1 ! 



Sorting for EBD
using single node to the utmost capacity

• Sorting long/variable length keys (strings)

• Implementations for GPUs and multi  
/many-core CPUs

• Hybrid parallelization scheme combining 
data-parallel and task-parallel stages

• Trimming keys to reduce host-to-device 
communication overheads

• Up to 100 million string keys per 
second

MSD radix sort 

Computational genomics 
(A,C,G,T)

apple
apricot 
banana 
kiwi

Don't have to examine 
all characters

Processing textual data
(e.g. corpus linguistics)

High efficiency on 
small alphabets
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Sorting for EBD
Plugging in GPUs for large-scale sorting

• Weak scaling performance (Grand 
Challenge on TSUBAME2.5)

– 1 ~ 1024 nodes (2 ~ 2048 GPUs)
– 2 processes per node and each node 

has 2GB 64bit integer

• Yahoo/Hadoop Terasort: 
0.02[TB/s]

– Including I/O

x1.4

x3.61

x389

0.25
[TB/s]

• Performance prediction

x2.2 speedup compared 
to CPU-based 

implmentataion when 
the # of PCI bandwidth 

increase to 50GB/s

8.8% reduction of 
overall runtime when 
the accelerators work 
4 times faster than 

K20x

 PCIe_#: #GB/s 
bandwidth of 
interconnect between 
CPU and GPU

• GPU implementation of 
splitter-based sorting (HykSort)



3. Extreme Big Data 
Programming, DSLs, Libraries, 

and APIs

Existing Abstractions made 
Extreme (MapReduce, Pregel)

+ New Abstractions for 
Extreme (Communication 

Reducing Algorithms) 



Software Technology that Deals with Deeper 
Memory Hierarchy in Post-petascale Era

JST-CREST project, 2012-2018, PI Toshio Endo

Comm/BW reducing
algorithms

System software for 
mem hierarchy mgmt

＋

＋

HPC Architecture with 
hybrid memory devices

HMC, HBM O(GB/s) Flash Next-gen NVM

Target: Realizing extremely Fast&Big simulations of
{O(100PF/s) or O(10PB/s)} & O(10PB) around 2018



Supporting Larger domains than 
GPU device memory for Stencil Simulations

>>

Caution: Simply “swapping out” to larger 
host  memory is disastrously slow

PCIe traffic is too large!

Keys are “Communication Avoiding &  
Locality Improvement” Algorithms

GPU mem
6GB

Host memory
54GB

L2$
1.5MB

GPU
cores

250GB/s

8GB/s

TSUBAME2.5 node

GPU card

CPU
cores



Temporal Blocking (TB) for Comm. Avoiding
• Performs multiple updates on a small 

block, before proceeding to the next block 

– Originally proposed to improve cache 
locality [Kowarschik 04] [Datta 08]

s-step updates
at once

Step 1 Step  2 Step  3 Step  4

Simulated
time

Redundant computation is introduced
due to data dependency with neighbor

Introducing “larger halo”

Step 1 Step  2 Step  3 Step  4

Redundancy can be removed when blocks
are computed sequentially [Demmels 12]

Multi-level TB to reduce
both 
• PCIe traffic
• device memory traffic
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• With optimized TB, 10x larger domain size is successfully used 
with little overhead!!!

 A step towards extremely fast&big simulations

3D 7point stencil on a K20X GPU (6GB GPU mem)
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5.3GB 52GB

Version 1
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Problem: Programming Cost
• Communication reducing algorithms efficiently 

support larger domains

• Programming cost is the issue

– Complex loop structure, complex border handling

• Reducing programming cost by using system 
software supporting memory hierarchy

– HHRT (Hybrid Hierarchical Runtime)

– Physis DSL, by Maruyama, RIKEN



Memory Hierarchy Management
with Runtime Libraries

Compute node
GPU mem

Host mem

Process’s
data

• HHRT supports memory swapping between GPU and host mem 
at granuarity of processes

• Similar to NVIDIA UVM, but works well with communication 
reducing algorithms

HHRT (Hybrid hierarchical RT) is for GPU supercomputers and 
MPI+CUDA user applications
• HHRT provides MPI and CUDA compatible APIs
• # of MPI processes > # of GPUs

• Several processes share a GPU

Compute node Compute node



HHRT Comm. Reducing Results

Larger

Faster

3D 7point stencil on a 
single K20X GPU
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Hamar (Highly Accelerated Map Reduce)
[Matsuoka Team- Sato, Shirahata et.al.]

 A software framework for large-scale supercomputers 
w/ many-core accelerators and local NVM devices
 Abstraction for deepening memory hierarchy

 Device memory on GPUs, DRAM, Flash devices, etc. 

 Features
 Object-oriented 

 C++-based implementation
 Easy adaptation to modern commodity 

many-core accelerator/Flash devices w/ SDKs

 CUDA, OpenNVM, etc.
 Weak-scaling over 1000 GPUs 

 TSUBAME2

 Out-of-core GPU data management
 Optimized data streaming between 

device/host memory

 GPU-based external sorting

 Optimized data formats for 
many-core accelerators
 Similar to JDS format



Hamar Overview

Map

Distributed Array

Rank 0 Rank 1 Rank n

Local Array Local Array Local Array Local Array

Reduce
Map

Reduce

Map

Reduce
Shuffle

Shuffle

Data Transfer between ranks

Shuffle
Shuffle

Local Array Local Array Local Array Local Array

Device(GPU) 
Data

Host(CPU) 
Data

Memcpy

(H2D, D2H)

Virtualized Data Object



Map/Reduce Implementation

• Optimizations for GPU accelerators
– Assign a warp (32 threads) per key for avoiding warp 

divergence in Map/Reduce

– Overlapping computation on GPU and data transfer 
between CPU and GPU

– Out-of-core GPU Sorting Algorithm

Map/
Reduce

Map/
Reduce

SortSort

Scan

Sort key-value for Scan

Compact keys to be unique

Overlap computation and 
data transfer



Weak Scaling Performance 
• PageRank application on TSUBAME 2.5
• Data size is larger than GPU memory capacity
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Existing Graph Analytics Libraries

 Single Node

– igraph (R package) 

– GraphLab/GraphChi (Carnegie Mellon University and Start-up, C++) 

 Distributed Systems

– MPI-based libraries 

• PBGL2 (Parallel Boost Graph Library, C++) [Gregor, Oopsla 2005]

• ParMetis (dedicated for parallel graph partitioning, C+), etc

– Hadoop-based libraries

• Apache Giraph (Pregel Model, Java) 

• PEGASUS (Generalized Iterative Sparse Matrix Vector Multiplication, Java 

CMU), etc

– GPS (Graph Processing System - Pregel Model, Stanford, Java + NIO)

– Distributed Graphlab (CMU) 

48



ScaleGraph Library 
 Many existing graph analytics libraries

 Single Node
 igraph, GraphLab/GraphChi, …

 Distributed Systems
 Apache Giraph, PBGL2, PEGASUS, GPS, Distributed Graphlab, …

 However, they are not optimized for the state of the art 
hardware.
 High-speed network, Multi-core CPUs, NVRAM

 Create an open source Highly Scalable Large Scale Graph 
Analytics Library beyond the scale of  billions of 
vertices and edges on Distributed  Systems 

 Grand Challenge: Peta byte scale graph analysis
 242 vertices and 246 edges (1.1PB) using 100TB DRAM and 5PB 

NVRAM.

URL: http://www.scalegraph.org/



ScaleGraph Architecture Design
 Based on our extended X10

 X10 is a new parallel distributed programming language.

 Fully utilizing MPI collective communication

 Native support for hybrid (MPI and multi-threading) parallelism

 XPregel: Graph processing framework
 Optimized message communication and Simple API

 Rich graph algorithms

PageRank
Spectral Clustering
Degree Distribution
Betweenness Centrality
Degree of Separation(HyperANF)
Strongly-connected coponent
Maximum Flow
Single Source Shortest Path
BFS ...

Supported algorithm

Software stack



XPregel – X10-based Pregel-like Graph 
Programming System for convergent architectures

XPregel optimizations on supercomputers

1. Utilize MPI collective communication.

2. Avoid serialization, which enables utilizing fast 

supercomputer interconnects

3. Destination of messages computed by a simple bit 

manipulation thanks to vertex id renumbering.

4. Optimized message communication when all vertices 

send the same message to all the neighbor vertices.

5. Simple API in X10 language.
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Performance Evaluation
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Performance Summary for ScaleGraph 2.2 
 Artificial big graph that follows various features of Social 

Network 
 Largest data : 4.3 billion vertices and 68.7 billion edges (RMAT : Scale 

32, 128 nodes)

 PageRank  : 16.7 seconds for 1 iteration

 HyperANF (B=5) = 71 seconds for 1 iteration

 Twitter Graph (0.47 billion vertices vertices and 7 billion 
vertices – around Scale 28.8) 
 PageRank (128 nodes): 2.56 seconds for 1 iteration

 Spectral Clustering (128 nodes) : 1,839 seconds 

 HyperANF (B=5, 128 nodes): 28 seconds for 1 iteration

 Degree Distribution (128 nodes): 128 seconds

 We will support out-of-core processing with external memory 
(NVRAM) in the future

* Hyper ANF is an algorithm of degree of separation



4. Extreme Big Data – System 
Software Software, 
Distributed Objects

Distribution, Instrumentation, 
Scaling, Resilience, 

Bandwidth Reduction, , …



Extreme scale I/O for burst buffers
[w/LLNL, CCGrid2014 Best Paper]
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Chunk buffers

Compute

node 1 

Compute

node 2
Compute

node 3

Compute

node 4

IBIO
client

IBIO
client

IBIO
client

IBIO server thread

file4

Storage

file3

file2

file1

3

fd1

fd2

fd3

fd4

2

Writer thread

Writer thread

Writer thread

Writer thread

Writer threads

chunk1

4

5

IBIO
client

IBIO write: four IBIO clients and one IBIO server

IBIO write

Compute node Burst buffer node

Applicatio

n

IBIO

Client

IBIO

Server

Write

threads

mSATA ☓ 8

Adaptec RAID ☓ 1

mSATA mSATA
mSATA mSATA

mSATA mSATA
mSATA mSATA

EBD I/O

• Provide POSIX I/O interfaces

– open, read, write and close

– Client can open any files on any servers

• open(“hostname:/path/to/file”, mode)

• IBIO use ibverbs for communication 
between clients and servers

– Exploit network bandwidth of infiniBand



Extreme scale resilience modeling

56
[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-

blocking Checkpointing System", SC12

• To find out the best checkpoint/restart strategy for systems with burst 
buffers, we model checkpointing strategies

Efficiency
Fraction of time an application 

spends only 
in useful computation 

Hi

Compute
node

Si

i = 0 i > 0

1 2 mi

Hi-1 Hi-1 Hi-1

Storage Model: HN {m1, m2, . . . , mN } 

Recursive structured storage modelC/R strategy model

Li = Ci + EiOi =
Ci + Ei (Sync.)

Ii               (Async.)

Ci or Ri =
< C/R date size / node >☓ <# of C/R nodes per Si

* > 

< write perf. ( wi )  >   or   <read perf. ( ri ) > 
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t0(rk )

ti(rk )

Duration

t + ck rk
No 

failure

Failur

e

li : i -level checkpoint time

: c -level checkpoint time

rc : c -level recovery time

cc

t : Interval
p0(T )

t0(T )

: No failure for T seconds 

: Expected time when p0(T )

pi(T )

ti(T )

: i - level failure for T seconds 

: Expected time when pi(T )

MLC model [2]



EBD I/O performance and the overall efficiency
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Fig. 6 Efficiency in increasing level-2 checkpoint/restart performance
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Fig. 7 Coordinated: Efficiency in different ratios of compute nodes to
a single burst buffer nodes with coordinated checkpoint/restart

impact system efficiency. We can achieve over 80% efficiency

with both coordinated and uncoordinated checkpoint/restart on

theburst buffer system with improved PFS performance of 10 and

20 ×. These results tell us that level 2 checkpoint/restart overhead

is a major cause of degrading efficiency, and its performance af-

fects the system efficiency much more than that of level 1. We

also find that improvement of system reliability for failures re-

quiring level 2 checkpoint is important.

6.4 Optimal Ratio of Compute Nodes to Burst Buffer Nodes

Another thing to consider when building a burst buffer system

is the ratio of compute nodes to burst buffer nodes. A large num-

ber of burst buffer nodes can increase the total bandwidth, but

the large node counts increase the failure rate of the system and

add to system cost. To explore the effect of the ratio of com-

pute node and burst buffer node counts, we evaluate efficiency

under different failure rates and level 2 checkpoint costs while

keeping I/O throughput of a single burst buffer node constant.

Figures 7 and 8 show the results with coordinated and uncoordi-

nated checkpoint/restart. We see that the ratio is not significant

up to scale factors of 10 ×. However, at a scale factor of 50 ×, a

larger number of burst buffer nodes decreases efficiency. Adding

additional burst buffer nodes increases the failure rate which de-
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Fig. 8 Uncoordinated: Efficiency in different ratios of compute nodes
to a single burst buffer nodes with uncoordinated check-
point/restart

grades system efficiency more than the efficiency gained by the

increased bandwidth. Thus, increasing the number of compute

nodes sharing a burst buffer node is optimal as long as the burst

buffer throughput can scale to the number of sharing compute

nodes.

7. Related W ork

Fast checkpoint/restart is important for an application running

for days and weeks at extreme scale to achieve efficient execu-

tion in the presence of failures. Multilevel checkpoint/restart

[3], [23] is an approach for increasing application efficiency.

Multilevel checkpoint libraries utilize multiple tiers of storage,

such as node-local storage and the PFS. Uncoordinated check-

point/restart [5], [11], [28] works effectively when coupled with

multilevel checkpoint/restart. The approach can limit the number

of processes that need to be restarted, i.e., only a partial restart

instead of the whole job, which can decrease restart time from

shared fi le system resources, such as a PFS or burst buffer. These

techniques can be improved further when coupled with incre-

mental checkpointing [2], [6], [26], and checkpoint compression

[15], [16]. However, such combined approaches are limited in

their ability to improve application efficiency at extreme scale be-

cause checkpoint/restart time depends on underlying I/O storage

performance.

Another approach is to accelerate I/O performance itself by al-

tering the storage architecture. Adding a new tier of storage is

one solution. Rajachandrasekar et al. [27] presented a staging

server which drains checkpoints on compute nodes using RDMA

(Remote Direct Memory Access), and asynchronously transfers

them to the PFS via FUSE (Filesystem in Userspace). Hasan et

al. [1] achieved high I/O throughput by using additional nodes.

As we observed, optimizing performance requires determination

of the proper number of burst buffers for a given number of com-

pute nodes. However, a comprehensive study on the problem has

not yet been done. To deal with bursty I/O requests, Liu etal. [21]

proposed a storage system design that integrates SSD buffers on

I/O nodes. The system achieved high aggregate I/O bandwidth.

However, to the best our knowledge, our work is the fi rst focus-

c 2013 Information Processing Society of Japan 7

Increasing the performance of the 
PFS does impact system efficiency

L2 C/R overhead is a major cause of 
degrading efficiency, so reducing level-
2 failure rate and improving level-2 C/R 

is critical on future systems

L2 performance improvement



• Key design issues for Scaled-out IOPS and I/O bandwidth
– Scalable distributed MDS (1M IOPS Object Creation)
– High Performance local object store
– Efficient parallel access (100 TB/s) and parallel query

メモリ

NVRAM

CPU

Object 
Store

App. App.App. App.

Distributed 
MDS

メモリ

NVRAM

CPU

Object 
Store

App. App.App. App.

Distributed 
MDS

High Performance Interconnect

R&D of EDB Distributed Object Store
(co-PI: Osamu Tatebe, U-Tsukuba)

High Performance
Object Store for 
NVRAM/flash

Parallel access
and parallel query

Scalable distributed
MDS



PPMDS – distributed Scale-out MDS 
[Hiraga & Tatebe, U-Tsukuba]

Target: Scale-out distributed MDS 
for O(1M) IOPS

Problems:
• Single MDS does not scale out
• Parallel file creations in the same 

directory require lock

Features of PPMDS:
• Distributed MDS
• Lock is not required for parallel file 

creations in the same directory by 
data management of parent inumber
and entry name

• Nonblocking distributed transaction
based on Dynamic Software 
Transaction Memory (DSTM)
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PPMDS – distributed Scale-out MDS 
Preliminary Performance

• GIGA+ [Swapnil Patil et al. 
FAST’11]
– Incremental directory partitioning
– Independent locking in each 

partition

• skyFS [Jing Xing et al. SC’09]
– Performance improvement during 

directory partitioning in GIGA+

• Lustre
– MT scalability in 2.X
– Proposed clustered MDS

• PPMDS [Our JST CREST R&D]
– Shared-nothing KV stores
– Nonblocking software transactional 

memory (No lock)

IOPS (file creates per sec) #MDS (#core)

GIGA+ 98K 32 (256)

skyFS 100K 32 (512)

Lustre 2.4 80K 1 (16)

PPMDS 270K 15 (240)



Design of Object Store for NVM 
[Takatsu and Tatebe, U-Tsukuba]

• Simplest object store format
– Fixed size of region (e.g. 2 TB)

• Large enough to avoid indirect accesses

– No directory entry

• Reserved base region number assignment 
reduces the number of locks

Super 
Region

Region 1 Region  N… …Region 2

Sparse address space (144 PB)



Initial performance of NVM Object 
Store for FusionIO ioDrive
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NVM-BPTree [Jabri and Tatebe, U-
Tsukuba]

 Take advantage of enterprise class NVM new 
capabilities: atomic writes, huge sparse 
address space, direct access to NVM device 
natively as a KVS

 Leverage NVMKV an Open source KVS API 
interface for NVM like flash.

 Enable range-queries support for KVS running 
natively on NVM like fusionio ioDrive

Keys stored in a in-memory B+ Tree 
with negligible overhead for KV pair 
insertion and retrieval.

 Provide optional persistence to the BPTree
structure and also snapshots

NVM-BPTree is a Key-Value Stores (KVS) running natively over Non-Volatile-
Memory (NVM), like flash, supporting range-queries.

OpenNVM like Key-value store Interface

NVM (Fusion-io flash device)

KVS  on NVM supporting range-queries

In-memory 
B+Tree



International Efforts on Big Data and 
Extreme Computing Convergence

International 
Exascale Software 

Project (2009-2012)

Big Data and Extreme 
Computing (2013-)

• Europe, US, China, Japan collaboration



TSUBAME4 2021-22 K-in-a-Box
Convergent Architecture

1/500 Size, 1/150 Power, 1/500 Cost, x5 DRAM+ NVM 
Memory

10 Petaflops, 10 Petabyte Memory (K: 1.5PB), 10K nodes
50GB/s Interconnect (200-300Tbps Bisection BW)

(Conceptually similar to HP “The Machine”)

Datacenter in a Box
Large Datacenter will become “Jurassic”



EBD: Summary
• Current “Big Data” not so “Big” but Next Gen 

will be! 

• IDC&Clouds inadequate to handle such EBD! 
“CONVERGENCE” a must!

• EBD Projects Objective: Develop fundamental 
“convergence” EBD systems and infrastructural 
technologies through “co-designs” with 
representative EBD applications
– (1) EBD Convergent Architecture

– (2) EBD Algorithms

– (3) EBD Proggramming Abstractions

– (4) EBD System Software

• EBD Convergence will make the current 
IDCs “Jurassic”


