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2013: TSUBAMEZ2.5 No.1 in Japan* in

Single Precision FP, 17 Petaflops
(*but not in Linpack)
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TSUBAME Evolution
Towards Exascale and Extreme Big Data

100PF -

Ll
-

—
,. P «0‘\6
— 8 ‘
500 K-Computer, .* \o‘“
SUPERCOMPUTER SITES 10. 5PF“ 2 A \\‘\

O-
1TBls~ W

Graph 500
No.3 (2011) 1PF =

"
L

" Phgeg
HPCI 25 Fast1/0

fxacces Choce A

s.n,\:u:..:: 100TF & L 2 25 30 163.2TF ; Phasel S
G Compuing No.7 No9 No.14lLNars Fast 1/0 10TB/s
Tokyo Institute 49 5TF > 100mil
of 1echnology ZSOTB
fl!uu:\ﬂl:.-ng' TSU BAM E 1 .1 1 '2 300G B/S iOPS
HPCE 10TF 1.0 30PB/Day 1ExaB/Day
Awards

2015H2

2007 2009 2011 2013

Copyright © Takayuki Aoki / Global Scientific Information and Computing Center, Tokyo Institute of Technology




0. Extreme Big Data
Backgroud

“Is Big Data really that Big?”



Extreme Big Data Example in Social NW
rates and volumes are |mmense

Slide courtecy David A. Bader
@ Georgia Tech

* Facebook:
— ~1 billion users
— average 130 friends
— 30 billion pieces of content shared / month
* Twitter:
— 500 million active users
— 340 million tweets / day
* Internet — 100s of exabytes / year
— 300 million new websites per year
— 48 hours of video to You Tube per minute
— 30,000 YouTube videos played per second

Continuous Billion-Scale Social Simulation with Real-Time
Streaming Data (Toyotaro Suzumura/IBM-Tokyo Tech)

= Applications

— Target Area: Planet (Open Street
Map)

— 7 billion people
= |nput Data
— Road Network (Open Street Map)
for Planet: 300 GB (XML)

— Trip data for 7 billion people
* 10 KB (1 trip) x 7 billion =
70 TB

— Real-Time Streaming Data (e.g. Social
sensor, physical data)

= Simulated Output for 1 Iteration
- 700 TB

Jact of new generation sequencers

v vy sy

Extreme Big Data in Genomics

[Slide Courtesy Yutaka

Akiyama @ Tokyo Tech.]

1,000,000 T [ 100,000,000
NGS (bp/$)
Doublmg time 5 rnonths 10,000,000
100,000 ’
- several TB / day / sequencinglab. (2012) £1.000,000
10,000 ¥ —_—
Hard disk storage (MB/$) ~100.000
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| |Doubling time 19 months P al = 100 -
i 4 o
10, A
. F10
Sequencing data (bp)/$
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c.f., HPCx33in 5 years
o y 3 et S i ; 0.1 1
1990 1992 1994 1996 1998 2000 2003 2004 2006 2008 2010 2012
Year Lincoln Stein, Genome Biology, vol. 11(5), 2010

Future "Extreme Big Data”
- NOT mining Tbytes Silo Data

- Peta~Zetabytes of Data

- Ultra High-BW Data Stream
- Highly Unstructured, Irregular
- Complex correlations between

data from multiple sources

- Extreme Capacity, Bandwidth,

Compute All Required



We will have tons of unknown genes

[Slide Courtesy Yutaka
Akiyama @ Tokyo Tech.]

Metagenome analysis

* Directly sequencing uncultured microbiomes obtained
from target environment and analyzing the sequence
data

— Finding novel genes from unculturable microorganism
— Elucidating composition of species/genes of environments

Examples of microbiome

Soil

Sea




Results from Akiyama group@Tokyo Tech

Ultra high-sensitive “big data” metagenome
sequence analysis of human oral microbiome

- Required > 1 million node*hour product on K-computer
- World’s most sensitive sequence analysis (based on amino acid similarity matrix)

- Discovered at least three microbiome clusters with functional differences.
(Integrated 422 experiment samples taken from 9 different oral parts)

572.8 M Reads / hour

82,944 node (663,552 Cores) =i - ] e eme e
K-computer (2012) G S B T
Oral cavity / .E»f;' = -
" ;'*-i'—;ﬁt;.;' so7a Metabolic Pathway Map
!, ;.:-,:';': b ‘L' i ‘,.’T '|
\ o !._.:r‘!‘ ) / .'u'\\. 4 ..,; - -—
. /. ;-"‘ ‘\“— ;\'\ N Plaque =3 39 . .
Oral vestibule “ i TON o
. - Oral cavity Oral vestibule Plaque 7

PC1 (11.0%)



Extremely Large Graphs

* The extremely large-scale graphs that social network

have recently emerged in various

application fields y
— US Road network . : 58 million edges Twitter

— Twitter fellow=ship : 1.47 billion edges 61.6 million nodes

i & 1.47 billion ed
— Neuronal network : - 100 trillion edges lilion edges

* Fast and scalable graph processing by using HPC

Neuronal network @ EU Human Brain Project
89 billion nodes & 100 trillion edges

US road network Cyber-security
24 million nodes & 58 million edges

15 billion log entrie

-

Image: Illustration by Mirko Ilic




@@ Graph500 “Big Data” Benchmark

v
Kronecker graph BSP Problem November 15, 2010 HP C
Graph 500 Takes Aim at a New Kind of HPC
P( s Richard Murphy (Sandia NL => Micron)
M \Znas “ | expect that this ranking may at times look very
A:0.57, B:0.19
C.0.19, D:0.05

different from the TOP500 list. Cloud architectures
T will almost certainly dominate a major chunk of
EERE part of the list.”

1

The 4™ Graph500 List (Jun2012) TSUBAME #4 w/GPUs

Toyotaro Suzumura, Koji Ueno, Tokyo Institute of Technology
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Reality: Top500 Supercomputers Dominate
No Cloud IDCs at all
TSUBAMEZ2.0 #3(Nov.2011) #4(Jun.2012)

G, adjacency matrix
amazon.con



Top Supercomputers vs. Global IDC

d | > = = . = i |
K Computer (#1 2011-12) Riken-AICS
Fujitsu Sparc VITII-fx Venus CPU

88,000 nodes, 800,000CPU cores Bridge Xeon
~11 Petaflops (10%°) -

1.4 Petabyte memory, 13 MW Power '1531?92? ??desst;glgg\llllon CPU cores
864 racks. 3000m? ariop

Tianhe2 (#1 2013) China Gwanjou
48,000 KNC Xeon Phi + 36,000 Ivy

0.8 Petabyte memory, 20 MW Power
??? racks. ??2?2m?

C.f. Amazon ~= 500,000 Nodes, ~6 million Cores??

#1 2012 IBM BlueGene/Q "Sequoia”
Lawrence Livermore National Lap
IBM PowerPC System-On-Chip DARPA study
98,000 nodes, 1.57million Cores| 2020 Exaflop (10'8)
. ~20 Petaflops 100 million~
1.6 Petabytes, 8MW, 96 racks 1 Billion Cores




Supercomputer Tokyo Tech.

Tsubame 2.0 A Major Northern Japanese
#4 Top5OO (2010) Cloud Datacenter (2013)
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~1500 nodes compute & storage
Full Bisection Multi-Rall
Optical Network =
Injection 80GBps/Node ,

Bisection 220Terabps

8 zones, Total 5600 nodes,
Injection 1GBps/Node
Bisection 160Gigabps




But what does "220Tbps" mean?

Global IP Traffic, 2011-2016 (Source Cicso)
2011 2012 2013 2014 2015 2016 CAGR

2011-2016
By Type (PB per Month / Average Bitrate in Tbps)
Fixed 23,288 32,990 40,587 50,888 64,349 81,347 28%
Internet 71.9 101.8 1253 157.1 1986 251.1
Manage 6,849 9,199 11,846 13,925 16,085 18,131 21%
dIP 21.1 28.4 36.6 43.0 49.6 56.0
Mobile 597 1,252 2,379 4,215 6,896 10,804 78%
data 1.8 3.9 7.3 13.0 21.3 33.3
Total IP , 43,441 54,812 69,028 (87:331-110,282 29%,
traffic l 94.9 l 1341 1692 2130 ! 2695 340.4

TSUBAME2.0 Network has TWICE [EERAS
the capacity of the Global Internet, feifl &\
being used by 2.1 Billion users &8




Breakdown of BFS execution on K computer

» Now, It Is a communication intensive

benchmark!!! 274
1200 ] » communicaton | MTEPi/node — 73% of the total
: execution time is spent
mC tat —
1000 |~ -OMPHRIHEN _7 on the communication
800 - Waltmg.

Elapsed Time (ms)
(o)}
o
o

B

1236
400 -+ MTEPS/node
200 —
.
64 nodes
(Scale 30)

*Problem size is weak

. scaling

65536 nodes
(Scale 40)




“Bi1g Data Assimilation” in Weather

High-resolution simulation

Combination of
next-generation technologies



110300.rf12sel.mov
110300.rf12sel.mov

Collecting Atmospheric Data

Satellite

Global continuous
collection

Variety of sensors,
stationary and mobile




Flow chart with exa-scale data size

(Best estimate)//

Initial State

~40TB
(100 members,

1 time level)

Simulation

| ~40TB (100 members, 1 time level)

~300TB (100 members, 7 time levels)

(100 members,

v1 time level)

DA

Sim- to Obs
conversion

[~100TB

(100 memberg)

‘;ad Statp/

~3OOTB (100 members, 7 time levels)

=15 Opservations /

~100TB (100 members) Challenge in global

- data sharing amon
Im-minus- Ol;s/ ° ’

weather services

1/0 intensive!
Repetitions of I/O between separate programs




In fact we will not be producing
sufficient strorage!

Worldwide HDD production: 550mil units and
declining => ~1 Yottabytes/year

» Global storage capacity 3 4 Yottabytes?
Slow capacity CAGR predicted: 15%
Flash increasing but still 10% of HDD
C.f. Top500/Exascale CAGR 100%!

Suppose 5-100 bytes/flop

»Exascale machine 57100 Exabytes HDD (&Tape)
500K-10 mil HDDs&Tape, $50mil-$1bil

» Conclusion; can’t store data, need to process them



Extreme Big Data (EBD)

2013-2018 Research Scheme
Fufur'e‘Non -Silo ExTr'eme Bl Data Apps

Ul‘rr'a Large Scale
Graphs and Social
Infrastructures

Massive Sensors and
Data Assimilation in
Weather Prediction

\

EBDBag | EBD System Software

ﬁj incl. EBD Object System el
Graph Store "1k :7:_,'._. 3-r4------§-r;--‘ sHBM | ;11..1.;-.:.;.: ot

Conver'ent Achlcture (Phases 1~4)
Lar'ge Capac:ty NVM, High-Bisection NW

QN

= Supercomputers
Very low BW & EfflClencTy Compute&Batch-Oriented




Japanese Big Data-HPC

Convergence Projects

« JST CREST Post Petascale (PD: Akinori Yonezawa)

— Katsuki Fujisawa(Univ. Kyushu): “Advanced Computing and
Optimization Infrastructure for Extremely Large-Scale Graphs on Post
Peta-Scale Supercomputers”

— Toshio Endo(Tokyo Tech.) “Software Technology that Deals with
Deeper Memory Hierarchy in Post-petascale Era”

— Osamu Tatebe (Univ. Tsukuba): “System Software for Post Petascale
Data Intensive Science”

« JST CREST “Big Data” (PD: M. Kitsuregawa & Y. Tanaka)
— Takemasa Miyoshi (Riken AICS): Innovating "Big Data Assimilation"
technology for revolutionizing very-short-range severe weather prediction
* Other Projects
— S. Matsuoka (Tokyo Tech.) JSPS Grant-in-Aid S “Billion-way Resiliency”
— TSUBAME3.0'!



1. Extreme Big Data
Machine Architecture

High Bandwidth
High Capacity
Deep Memory Hiearchy
via NVMs & Next-Gen
Optical Interconnect



TSUBAME2.0/2.5 Storage Overview

Storage 11PB (7PB HDD, 4PB Tape) |

<:QDR IB(x4) X 8

10GbE >

\9

GPFS: PFS GPFS GPF

|
—_—

it |
il

SFA10k #1 SFA10k #2 SFA10k #3 SFA10k #4 SFA10k #5
\+. O “j' ;} NO \j:--.
o _\ ~ 3 SFA10k #6
“Global Work “Global Work “NFS/CIFS/iSCSI by
“Global Work Space” #1 Space” #2 Space” #3 “Scratch” “cNFS/Clusterd Samba w/ GPFS” BlueARC”
Lustre

GPFS with HSM

3.6 PB

Parallel File System Volumes

Home Volumes

“Thin node SSD”

“Fat/Medium node SSD”

Scratch

1.2PB

HPCI Storage




TSUBAME2.0/2.5 Storage Overview
.................. Storage 11PB (7PB HDD, 4PB Tape) |

band QDR Ne O O and Othe
QDR IB(x4) X 20 QDRIB (x4) X 8 10GbE X 27
® = O
O O O ) ) 00
A O B .
= oua—ba 0 s D O
SFA10k #1 SFA10k #2 ) _
Read 0 O m ' SFA10k #6
Uald C c dpPpu Dard S O O
paramete s “NFS/CIFS/iSCSI by
“Scratch” “cNFS/Clusterd Samba w/ GPFS” BlueARC”
s—grained R U Home Volumes -I ZPB
B DO B DOY 3 -
DE 0)ge p —)

‘ Data transfer service
lbetween SCs/CCs

250 TB, 300-500GB/s H EE;' Storage

Scratch



A TSUBAMES.O prototype system
with advanced next gen cooling

40 compute nodes are oil-submerged
1200 liters of oil (Exxon PAQ ~1 ton)

#1 2013/11& 2014/6 Green 500

Single Node 5.26 TFLOPS DFP

System (40 nodes) 210.61 TFLOPS DFP
630TFlops SFP

Storage (3sSDs/node) 1.2TBytes SSDs/Node
Total 50TBytes
| ~50GB/s BW



EBD-1/0  |Preliminary I/O Evaluation on GPU

(Many-core I/O) and NVRAM

How to design local storage for next-gen supercomputers ?
- Local 1/0 prototype using 16 mSATA SSDs

=Capacity: 47B
*Read bandwidth: 8 GB/s

~320K I0PS

a Max Tsubame3 1/O BW: 20 TB/s
(3 usec

(or ~200Tbps ~= All Internet)

I/O performance of multiple mSATA SSD |/O performance from GPU to multiple mSATA SSDs
9000

35 | e=*=Raw8mSATA
8000 || “=*=Raw mSATA 4KB =3 MSATA RAIDO (1MB)
2000 || “=RAIDOIMB 3 || wwe=8 MSATA RAIDO (64KB) =it
- #=RAIDO 64KB —_ 4 a
~ v i
g6000 - 52.5 7 \.;I' »
= ~000 E 2 Abﬁﬁ-’—
'§ 4000 S / _-—
S 'n:n 1.5 -
e 3000 3
S 000 | ~ 7.39 GB/s from E 1 ~ 3.06 GB/s from
1000 '\16 MSATA SSDs (Enabled RAIDO) 0.5 1 8 mSATA SSDs to GPU
0 1 O T T T T T T T T T 1
0 5 10 15 20 0.2740.547 1.09 2.19 4.38 875 17.5 35 70 140

# mSATAs Matrix Size [GB]



Tsubame 4: 2020- DRAM+NVM+CPU

with 3D/2.5D Die Stacking
-The Ultimate Convergence of BD and EC-

2Tbps HBM
| NVM/Flash |  4~6HBM Channels | NVM/Flash |
[ NVM/Flash | 2TB/s DRAM & [ NVM/Flash |
| NVM/Flash | NVM BW I_( NVM/Rlash )—I
| DRAM | | DRAM |
I Y I 30PB/s I/O BW Possible I STy I
I o ,  1Yotta byte / Year ! Y I
TR DM bl st emom oo LA . 2 U1 TN
TSV nterposer "“

Direct Chip-Chip Interconnect with planar VCSEL
optics



EBD Interconnects (NIl Group)

; § EBD non—uniform Low latency write/read
access ~10 u s for 4KB

Typical Data Centers
-Poor scalability

- 1GbE + 10GbE
- TCP/IP basis

S
o/ 4 15 - 5-D Torus N~ A

Our low—jitter topology (<1us) _: T
w/ random shortcuts 212 |
K computer 211 7 o
L1\, Skywalk
Supercomputers Our topology has e
- Dedicated to neighboring better NW latency [IPDPS14] [: o
and uniform access o7 ‘ | | | |

0 8 16 32

Degree 24 40



2. Extreme Big Data
Algorithms

Graphs, Sorting,
Clustering, Spatial Data...



JST CREST: Advanced Computing and Optimization Infrastructure for
Extremely Large-Scale Graphs on Post Peta-Scale Supercomputers

p
* Innovative Algorithms and implementations

e Optimization, Searching, Clustering, Network flow, etc.
* Extreme Big Graph Data for emerging applications

5,000~100,000nodes (1~20MW)

| Etimoatota) 10w
I NVRAM? 1 | ]

RS

o 230~2% nodes and 2%° ~ 246 edges 178/ [ Vector+Scalar ¥
e Over 1M threads are required for real-time analysis —
* Many applications on post peta-scale supercomputers socs/] = SL::::"
* Analyzing massive cyber security and social networks :
* Optimizing smart grid networks 4 I
* Health care and medical science Eae e

* Understanding complex life system

15 20 25

L
bofedges) Humen Breln Project R B Example: Symbolic Network
S et il ® Human Brain Project
a0 A 1 http://www.humanbrainproject.eu/
Graph500 (Medium)
ol A[Twitter (tweets/day)] | M Understanding the human 'brain is one of
g _ Crapnso0 (Smal _ - : the greatest challenges facing 21..century
§’ »! Graph5i)0 (Mini) SClence
0T g P B 89 billion neurons(nodes)
25 ool o : M 1 trillion connections(edges)
® USA-road-d.LKS.gr ] USA Road Network
' ’ = ® Over 107 bytes memory(storage) and
2 [ @FSSAwm Ny QL/( L) nodes 108 Flops for brain simulator
30 35 45

=4
40
log(n) # of nodes



The Graph500 — June 2014
K Computer and TSUBAME 2.0 & 2.5

Graph500 ranking history for BFS performance on
TSUBAME2.0 and 2.5 TSUBAME2.0 and 2.5
1400 1280
m 1200
November 2011 99.858  Top-down only 1000
June 2012 4  317.09 GPU £ 800
G 600 462.25
November 2012 20 462.25 GPU 21 00
400
June 2014 12 1280  Efficient hybrid 200 %%S—I I
o | WL .

*Every score is obtained using TSUBAME2.0 1366 nodes

or TSUBAME 2.5 1024 nodes 0&” @,9’4” (,90 Q,LQ”D‘
) ) & S N S
Graph500 ranking history for & K & R
K Computer N N
m GTEPS
November 2013 5524.12 Top-down only

June 2014 1 17977.05 Efficient hybrid







Large Scale Graph Processing Using NVM

1. Hybrid-BFS (Beamer’11) 2. Proposal

DRAM NVM 5
Source
Top-down Holds highly accessed data Holds full size, Of Graph
Bottom-up .1
T 2
Load highly accessed graph data before BFS
3. Experiment . 60 Limit of DRAM Only
CPU_ | Intel Xeon E5-2690 X 2 - 4.1
DRAM 956 GB % L e
NVM EBD-1/0 2TB X 2 g< 4.0 | ——DRAM + EBD-1/0 |
S8 3.0 |—DRAM Only
wil www.crucial.com/ wil GB
2B - X o pLiTrilll
mSATA | ., mSATA 3 8L o 4 times larger graph with
SSD SSD = 0'0 6.9 % of degradation
_én - 23 24 25 26 27 28 29 30 31

7
www.adaptec.com

SCALE
(# vertices = 25CALE)



The Green Graph500 list : Nov. 2013

http://green.graph500.org
* Measures power-efficiency using TEPS/W ratio

* Results on various systems such as TSUBAME-
KFC Cluster and Android mobiles
Big Data category

TSUBAME-KFC
6.72 MTEPS/W (44.01 GTEPS)

-

—

SONY Xperia-A-SO-04E
153 MTEPS/W (0.48 GTEPS)

of

= 6.72 Tokyo Institute of Technology | TSUBAME KFC | 47 32 |44.01] 32
2 5.41 | Forschungszentrum Julich (FZJ) JUQUEEN 3 38 | 5848 |16384
3 4.42 Argonne National Laboratory DOE@?O/ ANL 2 40 |14328|32768
4 4.35 Tokyo Institute of Technology | EBD-RH5885v2 | 96 | 30 | 3.67 | 1
5 3.55 Lawrence Livermore National DOE/NNSA.\/LLNL ] 40 115363/45534

Laboratory Sequoia
Small Data category
UU

1 | 153.17 | Chuo University |GraphCREST-Xperia-A-SO-04E[ 143 | 20 (0.478| 1
2 | 129.63 | TOKYOInstitute of | CREST-NEXUS7-2013 | 141 | 20 |0.534| 1

Technology

University of ’
3 | 73.57 Tsukuba kittyé 58 | 25 [17.207] 1
4 | 64.12 | Chuo University GraphCREST-Tegra3 150 | 20 |0.154| 1
S | 53.82 | Chuo University GraphCREST-Intel-NUC 124 | 23 (1.082( 1




Results : BFS Performance

DRAM

NVM

SCALE
(Total Data Size)

GTEPS
MTEPS / W

The Graph 500 2014 June

DRAM + NVM model

128 GB

ioDrive2 1.2 TB X

2

30
(500GB)

7.98
28.88

256 GB

EBD-1/0 2TB X 2

31
(1TB)

13.80
35.21

1024 GB

e Tecal ES3000

800GBx2,1.2TBx2

* EBD-I/O4TB X 2

33
(4TB)

3.11
3.42

~ X6 better than Nov. 2013 #1 !



Keysisecond, (milloins)

Sorting for EBD —
ing single node to the utmost capacity H l ‘l
usi —aillll

Sorting long/variable length keys (strings) Sorting
Implementations for GPUs and mU|t| One of the fiindamental nrimitivec
/many-core CPUs Fxtremelv well studied
Hybnd para”e”zation scheme Combining \/arietv of data tvnece cizee hardwAare
data-pal‘allel and taSk'para”el StageS architectiiree and charactericetice
Trimming keys to reduce host-to-device leave lots of space for improvement
communication overheads
Up to 100 million string keys per MSD radix sort apple
second , . apricot
Don't have to examine— banana
0 . | all characters - Kiwi
A | Processing textual data
) WYV (e.g. corpus linguistics)
o A1 vy Highefficiency on
() | ' | small alphabets
':; — sequencial - 2CPUx32Threads
P 1CPUx12threads 1GPU(K20x) \
A Computational genomics __ as&*
e | (ACGT) S

Number of keys, (millions)



Sorting for EBD

Plugging in GPUs for large-scale sorting

HykSort 1thread
4 HykSort 6threads
# HykSort GPU + 6threads

w
o
1

x1.4

g\)billions)

Keys/second

x3.61

= «  GPU implementation of

0.02[TB/s]

splitter-based sorting (HykSort)

« Weak scaling performance (Grand
Challenge on TSUBAME?2.5)
— 1~ 1024 nodes (2 ~ 2048 GPUs)

— 2 processes per node and each node
has 2GB 64bit integer

« Yahoo/Hadoop Terasort:

| X389 | — Including I/O

- Performance prediction

500 1000 1500 2000
# of proccesses (2 proccesses per node)
K20x x4 faster than K20x

D
o
1

N
o
L

@ HykSort 6threads

A HykSort GPU + 6threads >
® PCle_10

-+ PCle_100

&+ PCle_200

+-PCle_50

~ Prediction of our implementation

PCle #: #GB/s
bandwidth of
interconnect between
CPU and GPU

Keysr()second(bllhons)
o

o
1

0 500 1000 1500 20000 500 1000 1500 2000

# of proccesses (2 proccesses per node)

x2.2 speedup compared
to CPU-based
implmentataion when
the # of PCI bandwidth
increase to 50GB/s

8.8% reduction of
overall runtime when
the accelerators work

4 times faster than

K20x




3. Extreme Big Data
Programming, DSLs, Libraries,
and APIs

Existing Abstractions made
Extreme (MapReduce, Pregel)
+ New Abstractions for
Extreme (Communication
Reducing Algorithms)



Software Technology that Deals with Deeper

Memory Hierarchy in Post-petascale Era
JST-CREST project, 2012-2018, PI Toshoio Endo

860
- 600600
Comm/BW reducing 80000
. 00000
algorithms 8 T | e 560°
P N §°
+ " - :.‘u,’.:' = ’\;’:h;;"';m;", ™\
System software for i} /
mem hierarchy mgmt 0000 \“;
+ " =
[
HPC Architecture with - -
hybrid memory devices SemcE
HMC, HBM O(GB/S) Flash Next-gen NVM

Target: Realizing extremely Fast&Big simulations of
{O(100PF/s) or O(10PB/s)} & O(10PB) around 2018




Supporting Larger domains than
GPU device memory for Stencil Simulations

TSUBAME2.5 node

GPU card

GPU
cores

L2S
1.5MB

N =

CPU
cores

GPU mem

6GB

—

Host memory
54GB

r—

A —2 7 _{(‘:’,
} 'n‘..\/) % %

Caution: Simply “swapping out” to larger
host memory is disastrously slow
PCle traffic is too large!

=

Keys are “Communication Avoiding &
Locality Improvement” Algorithms




Temporal Blocking (TB) for Comm. Avoiding

* Performs multiple updates on a small
block, before proceeding to the next block

— Originally proposed to improve cache
locality [Kowarschik 04] [Datta 08]

Introducing “larger halo”
Step 1 /m

Simulated
time
Redundant computation is introduced
due to data dependency with neighbor
Step1l Step 2

Redundancy can be removed when blocks
are computed sequentially [Demmels 12]

..........

..........

/
s-step updates
at once

| €

Multi-level TB to reduce

both

* PCle traffic
* device memory traffic



Single GPU Performance

3D 7point stencil on a K20X GPU (6GB GPU mem)

5.3GB 52GB
200 . —
Faster Version 3
180 H—
_/ \_ 160 _%L
= 140 ¢
3 120 —
e \ ) =4—Common
© 100 Version 1 — i
8 30 - =#-Naive
§. 60 \ —&—Basic-TB
40 Opt-TB
20
0 T T . . T Fi
0 500 1000 1500 2000
Size of Each Dimension .
> Bigger

* With optimized TB, 10x larger domain size is successfully used
with little overhead!!!

- A step towards extremely fast&big simulations




Problem: Programming Cost

Communication reducing algorithms efficiently
support larger domains

Programming cost is the issue

— Complex loop structure, complex border handling

e

Reducing programming cost by using system
software supporting memory hierarchy

— HHRT (Hybrid Hierarchical Runtime)
— Physis DSL, by Maruyama, RIKEN



Memory Hierarchy Management

with Runtime Libraries
HHRT (Hybrid hierarchical RT) is for GPU supercomputers and

MPI+CUDA user applications

* HHRT provides MPI and CUDA compatible APIs

 # of MPI processes > # of GPUs
e Several processes share a GPU

Compute node

Compute node Compute node
, GPU mem
Prpcess’s
ddta T -
\\ ! “. . ‘I' “. \
VP i ]
Host mem

 HHRT supports memory swapping between GPU and host mem

at granuarity of processes

e Similar to NVIDIA UVM, but works well with communication

reducing algorithms




Faster

AN

140
120

Speed (GFlops)
N OB O 0 O
© © © &6 o

o

HHRT Comm. Reducing Results

Beyond GPU memory efficient
execution w/ moderate programming cost

3D 7point stencil on a
single K20X GPU

Weak scalability on TSUBAME?2.5
: 3.4GB per GPU

Large: “16GB” per GPU (>6GB!)
20

Small -m-Llarge

[EEN
92}

[EEY
o

(9a]
Speed (TFlops)

14TFlops with

3TB Problem
L T —— T — 1 O
0 10 20 30 0 50 100 150 200
roblem Size (GB)
Larger The number of GPUs
-=-Hand-TB —2—NoTB —-HHRT-TB



Hamar (Highly Accelerated Map Reduce)

[Matsuoka Team- Sato, Shirahata et.al.]

» A software framework for large-scale supercomputers
w/ many-core accelerators and local NVM devices >
Abstraction for deepening memory hierarchy .
Device memory on GPUs, DRAM, Flash devices, etc.

» Features

Object-oriented
C++-based implementation
Easy adaptation to modern commodity
many-core accelerator/Flash devices w/ SDKs st
1 CUDA, OpenNVM, etc.
Weak-scaling over 1000 GPUs
TSUBAME2
Out-of-core GPU data management

Optimized data streaming between
device/host memory

GPU-based external sorting
Optimized data formats for
many-core accelerators

Similar to JDS format




Hamar Overview

Rank 1

ce

Rank n

Shuffle

Reduce

Gl

1

Lo&al Array Local Array | Local Array Local Array \
% 1 N
< Data Transfer between ranks D
\ v —v A v
Local Array Local Array Local Array Local Array
\ \ \Z \
Distributed Array

J

\

AN

/(/irtualizéd-DaLaiject//

Device(GPU)

Data

Host(CPU)
Data

«—> Memcpy
(H2D, D2H)



Map/Reduce Implementation

* Optimizations for GPU accelerators

— Assign a warp (32 threads) per key for avoiding warp
divergence in Map/Reduce

— Overlapping computation on GPU and data transfer
between CPU and GPU

— Out-of-core GPU Sorting Algorithm

Sort M 4 Sort key-value for Scan

Compact keys to be unique

Map/ Map/ Overlap computation and
Reduce data transfer



Performance [MEdges/sec]

Weak Scaling Performance

* PageRank application on TSUBAME 2.5
e Datasize is larger than GPU memory capacity

2.81 GE/s on 3072 GPUs
SCALE 23 - 24 per Node (SCALE 34)

3000
=¢=1CPU (S23 per node)
2500 - =@=1GPU (S23 per node)
2.10x Speedup
2CPUs (S24 per node)
2000 ) erGPUS (S24 per node) (3 GPU v 2CPU)
1500 «#=3GPUs (S24 per node)
1000 o
500
0 [ [ 1
0 200 400 600 800 1000 1200

Number of Compute Nodes



Existing Graph Analytics Libraries

= Single Node
— igraph (R package)
— GraphLab/GraphChi (Carnegie Mellon University and Start-up, C++)

= Distributed Systems

— MPI-based libraries

GraphlLab®

N

+ PBGL2 (Parallel Boost Graph Library, C++) [Gregor, Oopsla 2005]

- ParMetis (dedicated for parallel graph partitioning, C+), etc
— Hadoop-based libraries

« Apache Giraph (Pregel Model, Java)
 PEGASUS (Generalized lterative Sparse Matrix Vector Muli

CMU), etc

— GPS (Graph Processing System - Pregel Model, Stanford, Java + NIO)
— Distributed Graphlab (CMU)



ScaleGraph Library

» Many existing graph analytics libraries
Single Node N A 5
igraph, GraphLab/GraphChi, ... ! )] L a b
Distributed Systems
Apache Giraph, PBGL2, PEGASUS, GPS, Distributed Graphlab, ...

GIRAPH

» However, they are not optimized for the state of the art

hardware.
High-speed network, Multi-core CPUs, NVRAM

» Create an open source Highly Scalable Large Scale Graph
Analytics Library beyond the scale of billions of

vertices and edges on Distributed Systems

» Grand Challenge: Peta byte scale graph analysis

242 vertices and 2%¢ edges (1.1PB) using 100TB DRAM and 5PB

NVRAM.

URL: http://www.scalegraph.org/



ScaleGraph Architecture Design

» Based on our extended X10
X10 is a new parallel distributed programming language.

» Fully utilizing MPI collective communication
» Native support for hybrid (MPIl and multi-threading) parallelism

» XPregel: Graph processing framework
Optimized message communication and Simple API

» Rich graph algorithms Software stack
Supported algorithm User Program
PageRank
Spectral Clustering Graph Algorithm
Degree Distribution
Betweenness Cent_rallty Xpreg.el BLAS for Sparse Matrix File 1O
Degree of Separation(HyperANF) X10 | Graph Processing System
Strongly-connected coponent T _ :
Maximum Elow v Third Party Library ScaleGraph Base X10 Standard Lib
laximu XI10 & C++  (ARPACK, METIS) Library Team
Single Source Shortest Path ———
BFS ...

MPI




XPregel — X10-based Pregel-like Graph
Programming System for convergent architectures

= XPregel optimizations on supercomputers

1. Utilize MPI collective communication.

2. Avoid serialization, which enables utilizing fast
supercomputer interconnects

3. Destination of messages computed by a simple bit
manipulation thanks to vertex id renumbering.

4. Optimized message communication when all vertices
send the same message to all the neighbor vertices.

5. Simple API in X10 language.




Performance Evaluation

Degree of Separation

HyperANF in Strong Scaling (B=5, Scale 28, 1 iterations)

Degree of Separation

HyperANF in Weak Scaling (B=5, Scale 22, 1 iterations)

0 >0 =—RMAT - =—RMAT PR

2 40 Random |— 26

S Ss o

230 24

Q (]

E 20 E 3

5 ‘\0\ )

2 10 k5

0 w1

I.I_.I O T T T 1 I.I_.I 0 T T T T T T T 1
16 32 64 128 1 2 4 8 16 32 64 128

# of nodes (TSUBAME?2.5) # of nodes (TSUBAMEZ2.5)
ScaleGraph vs. Giraph, PBGL ScaleGraph vs. Giraph, PBGL
PageRank in Strong Scaling (Scale 25, 30 iterations) PageRank in Weak Scaling (Scale 22, 30 iterations)

- 800 ——PBGL - 1400 | —e=PBGL

S Giraph T 1200 Giraph

§ 600 XPregel § 1000 XPregel

(7] (7]

- — 800

081400 0\\ @ €00

2 ! 2 200 ——

1] © -_—

E O T T T E O e I I T T T 1

2 4 8 16 1 2 4 8 16 32

# of nodes (TSUBAMEZ2.5)

' 9.4x Speedup

# of nodes (TSUBAME2.5)

38.4x Speedup




Performance Summary for ScaleGraph 2.2

» Artificial big graph that follows various features of Social
Network

Largest data : 4.3 billion vertices and 68.7 billion edges (RMAT : Scale
32, 128 nodes)

PageRank :16.7 seconds for 1 iteration
HyperANF (B=5) = 71 seconds for 1 iteration
» Twitter Graph (0.47 billion vertices vertices and 7 billion
vertices — around Scale 28.8)
PageRank (128 nodes): 2.56 seconds for 1 iteration
Spectral Clustering (128 nodes) : 1,839 seconds
HyperANF (B=5, 128 nodes): 28 seconds for 1 iteration
Degree Distribution (128 nodes): 128 seconds

» We will support out-of-core processing with external memory
(NVRAM) in the future

* Hyper ANF is an algorithm of degree of separation



4. Extreme Big Data — System
Software Software,
Distributed Objects

Distribution, Instrumentation,
Scaling, Resilience,
Bandwidth Reduction, , ...



Extreme scale 1/O for burst buffers

Provide POSIX I/O interfaces

— open, read, write and close

— Client can open any files on any servers

« open(“hostname:/path/to/file”, mode)
IBIO use ibverbs for communication
between clients and servers
— Exploit network bandwidth of infiniBand

Writer thread
I

Writer thread
Writer thread

Writer thread

Chunk buffers Writer threads Storage

IBIO write: four IBIO clients and one IBIO server

Compute node Burst buffer node
A I
[ \ [
o IBIO IBIO Write
Client Server threads
mSATA X 8 : Rad&’ l
Adaptec RAID X 1 %—_’

EBD I/O T
SSD Crucial m4 msata 256GB CT256M4SSD3 \-*
(Peak read: S00MB/s, Peak write: 260MB/s) Gemmmm i

SATA converter KOUTECH I0-ASS110 mSATA to 2.5° SATA «—
Device Converter with Metal Fram
RAID Card Adaptec RAID 7805Q ASR-7805Q Single $ 1




Extreme scale resilience modeling

* To find out the best checkpoint/restart strategy for systems with burst
buffers, we model checkpointing strategies

C/R strategy model

C;+ E; (Sync.)
0,= L=C+E,
1; (Async.)

< C/R date size / node >X <# of C/R nodes per SI-* >

Cior R, =

< write perf. ( w;) > or <read perf. ( ;) >

+

Recursive structured storage model

1 2 m;
Hj-] Hj-] ...... Hi']
C t
2] — 1]
w w w
i=0 >0

Storage Model Hy {m,, m,, . .., my

MLC model [2] ‘

OO 6 Q 0 0 (2> Duration
1 1 1. 1 1‘ t+ck rk
N <: : ' Polt+cy) o(n)
W failL?re t(t+c,) H 1(n)
plt+e) . p(n)
D Failur @" 1 ;(t+¢k 9"1 t;(r:)

po(T)
to(T)
: ¢-level checkpoint time
pi(T) 3
: ¢-level recovery time H
- €
a1 = X-(1—eT)

{Po(T ) : No failure for T'seconds

i 1,(T) : Expected time when 24(T)

A _ AT

( ) o {P[(T ) : i-level failure for 7'seconds
(AT +1)-e M

t(T) : Expected time when 2,(T)

: Interval

~\«\,\' QN

: 7-level checkpoint time

=

Efficiency

Fraction of time an application
spends only
in useful computation

[2] Kento Sato, Adam Moody, Kathryn Mohror, Todd Gamblin, Bronis R. de Supinski, Naoya Maruyama and Satoshi Matsuoka, "Design and Modeling of a Non-
blocking Checkpointing System", SC12




Efficiency

Efficiency

EBD I/O performance and the overall efficiency
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Flat Buffer-Coordinated
B Burst Buffer-Coordinated
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o o™
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# of Processes

Increasing the performance of the

PFS does impact system efficiency

L2 C/R overhead is a major cause of
degrading efficiency, so reducing level-
2 failure rate and improving level-2 C/R

is critical on future systems

57



R&D of EDB Distributed Object Store

(co-Pl: Osamu Tatebe, U-Tsukuba)

* Key design issues for Scaled-out IOPS and 1/0O bandwidth
— Scalable distributed MDS (1M IOPS Object Creation)
— High Performance local object store
— Efficient parallel access (100 TB/s) and parallel query

High Performance Interconnect

I I I I I I Parallel access

and parallel query
N N

A+ App App. » App  App.

) ﬂ . ﬂ Scalable distributed
Distributed Distributed
1

MDS : MDS MDS

—

—

High Performance

: C;bJeCt . C;?e(:t Object Store for
Ol CHE NVRAM /flash



PPMDS — distributed Scale-out MDS
[Hiraga & Tatebe, U-Tsukuba]

4 )
Target: Scale-out distributed MDS

KVS RPC
fOr O(lM) IOPS KVS |/|: CIient |/F
KVS RPC Transaction I/F
Problems: Sy File System Impl
* Single MDS does not scale out I/F FS RPC Server I/F

* Parallel file creations in the same
directory require lock

Features of PPMDS:

* Distributed MDS

* Lock is not required for parallel file
creations in the same directory by
data management of parent inumber
and entry name

* Nonblocking distributed transaction
based on Dynamic Software
Transaction Memory (DSTM)

FS RPC
User Client |/F

Application PPMDS
Client Impl

N~

FUSEX

UserlLand

D
jras)
(o
v
O

VFS

kernel

module




PPMDS - distributed Scale-out MDS
Preliminary Performance

* GIGA+ [Swapnil Patil et al. * Lustre
FAST’'11] — MT scalability in 2.X
— Incremental directory partitioning — Proposed clustered MDS
— Independent locking in each e PPMDS [Our JST CREST R&D]
partition

_ ] ) — Shared-nothing KV stores
* skyFS [Jing Xing et al. SC'09] — Nonblocking software transactional
— Performance improvement during memory (No lock)
directory partitioning in GIGA+

_ IOPS (file creates per sec) |#MDS (#core)

GIGA+ 98K 32 (256)
skyFS 100K 32 (512)
Lustre 2.4 80K 1(16)

PPMDS 270K 15 (240)



Design of Object Store for NVM
[Takatsu and Tatebe, U-Tsukuba]

< Sparse address space (144 PB) >

Super
Region

Region 1l Region 2

* Simplest object store format

— Fixed size of region (e.g. 2 TB)
* Large enough to avoid indirect accesses

— No directory entry

* Reserved base region number assignment
reduces the number of locks



Initial performance of NVM Object
Store for FusionlO ioDrive

250,000

200,000

150,000

100,000

50,000

# file creations/sec

200K IOPS
/'//.
. | NVMFS
== =% 7% A
| Ext3/4/XFS/Btrfs
1 2 4 8 16

# threads



NVM-BPTree [Jabri and Tatebe, U-
Tsukubal

NVM-BPTree is a Key-Value Stores (KVS) running natively over Non-Volatile-
Memory (NVM), like flash, supporting range-queries.

e Take advantage of enterprise class NVM new
capabilities: atomic writes, huge sparse

address space, direct access to NVM device KVS on NVM supporting range-queries

natively as a KVS

In-memory

» Leverage NVMKV an Open source KVS API B+Tree
interface for NVM like flash.

e Enable range-queries support for KVS running
natively on NVM like fusionio ioDrive

with negligible overhead for KV pair
insertion and retrieval.

e Provide optional persistence to the BPTree
structure and also snapshots




International Efforts on Big Data and
Extreme Computing Convergence

 Europe, US, China, Japan collaboration

&3 eXASCALE

International
Exascale Software Big Data and Extreme
Project (2009-2012) Computing (2013-)




TSUBAME4 2021-22 K-in-a-Box

Convergent Architecture

1/500 Size, 1/150 Power, 1/500 Cost, x5 DRAM+ NVM
Memory

10 Petaflops, 10 Petabyte Memory (K: 1.5PB), 10K nodes
50GB/s Interconnect (200-300Tbps Bisection BW)
(Conceptually similar to HP “The Machine”)

Datacenter in a Box
Large Datacenter will become “Jurassic”



EBD: Summary

Current “Big Data” not so “Big” but Next Gen
will be!

IDC&Clouds inadequate to handle such EBD! =
“CONVERGENCE” a must!

EBD Projects Objective: Develop fundamental
“convergence” EBD systems and infrastructural

technologies through “co-designs’ with
representative EBD applications

— (1) EBD Convergent Architecture

— (2) EBD Algorithms

— (3) EBD Proggramming Abstractions
— (4) EBD System Software

EBD Convergence will make the current
IDCs “Jurassic”



