
Beyond Exascale (?)

- the sky’s the limit, or is it

sustainable? –

Satoshi Matsuoka

Tokyo Institute of Technology

How much “Flops” will the

world produce in 2020?
NVIDIA Tegra K1 (2013)

28nm, 384GFlops SFP
~10W

NVIDIA Tegra 2020
7nm 1TFlop DFP

~10W

2 Billion smartphones/year -> 2 x 1021
or 2 ZetaFlops @

20 GW (c.f. Entire Japan ~30 GW)

How much energy to drive it?
(Wattage Source Wikipedia)

• Assuming 50GFlops/W

– Global electricity usage: 2.11 TW-> 105 ZF

– Global energy usage: 17.1 TW -> 855 ZF

– Earth solar energy reception: 174 PW-> 610 YF

– Dyson sphere: 384 YW-> 1.92E37 Flops

– But are we making good use of the

capability? (x100 ~= 10 years)

We are starting to observe our fate:
Projected Performance Development

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

Microprocessor simulation

performance circa 1970s

• Hitachi Basic Master (1978)
– “The first PC in Japan”

– Motorola 6802--1Mhz, 16KB
ROM, 16KB RAM

– Linpack in BASIC: Approx. 70-
80 FLOPS

• We got “simulation” done (in
assembly language)
– Nintendo NES (1982)

• MOS Technology 6502 1Mhz
(Same as Apple II)

– “Pinball” by Matsuoka & Iwata
(now CEO Nintendo)
• Realtime dynamics + collision +

lots of shortcuts

• Average ~several KFLOPS

Cray-1 (1976)
Linpack

80-90MFlops
(est.)

Running Linpack 10

~x100

Where are we now?

• Google Petasort

(10 Tera Keys, 100

Byte Records)

(MapReduce)

– 2008: 4K nodes,

8h2m 460M keys/s

– 2011: 8K nodes,

33min, 5G Keys/s

– Our on memory GPU

sort with NV-link

1K nodes 60G Keys

c.f. Google Petasort(2011)

XPregel – X10-based Pregel-like Graph
Programming System for convergent architectures

XPregel optimizations on supercomputers

1. Utilize MPI collective communication.

2. Avoid serialization, which enables utilizing fast

supercomputer interconnects

3. Destination of messages computed by a simple bit

manipulation thanks to vertex id renumbering.

4. Optimized message communication when all vertices

send the same message to all the neighbor vertices.

5. Simple API in X10 language.

7

Performance Evaluation

0

10

20

30

40

50

16 32 64 128

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

RMAT

Random

ScaleGraph vs. Giraph, PBGL

Degree of Separation Degree of Separation

0

200

400

600

800

2 4 8 16

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

PBGL
Giraph
XPregel

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

RMAT

ScaleGraph vs. Giraph, PBGL

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

PBGL

Giraph

XPregel

9.4x Speedup

PageRank in Weak Scaling (Scale 22, 30 iterations)PageRank in Strong Scaling (Scale 25, 30 iterations)

HyperANF in Weak Scaling (B=5, Scale 22, 1 iterations)HyperANF in Strong Scaling (B=5, Scale 28, 1 iterations)

38.4x Speedup

Hamar (Highly Accelerated Map Reduce)
[IEEE Cluster 2014]

 A software framework for large-scale supercomputers
w/ many-core accelerators and local NVM devices
 Abstraction for deepening memory hierarchy

 Device memory on GPUs, DRAM, Flash devices, etc.

 Features
 Object-oriented

 C++-based implementation
 Easy adaptation to modern commodity

many-core accelerator/Flash devices w/ SDKs

 CUDA, OpenNVM, etc.
 Weak-scaling over 1000 GPUs

 TSUBAME2

 Out-of-core GPU data management
 Optimized data streaming between

device/host memory

 GPU-based external sorting

 Optimized data formats for
many-core accelerators
 Similar to JDS format

HAMAR Map/Reduce Implementation

• Optimizations for GPU accelerators
– Assign a warp (32 threads) per key for avoiding warp

divergence in Map/Reduce

– Overlapping computation on GPU and data transfer
between CPU and GPU

– Out-of-core GPU Sorting Algorithm

Map/
Reduce

Map/
Reduce

SortSort

Scan

Sort key-value for Scan

Compact keys to be unique

Overlap computation and
data transfer

Weak Scaling Performance
• PageRank application on TSUBAME 2.5
• Data size is larger than GPU memory capacity

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

P
e

rf
o

rm
an

ce
 [

M
Ed

ge
s/

se
c]

Number of Compute Nodes

SCALE 23 - 24 per Node

1CPU (S23 per node)

1GPU (S23 per node)

2CPUs (S24 per node)

2GPUs (S24 per node)

3GPUs (S24 per node)

2.81 GE/s on 3072 GPUs
(SCALE 34)

2.10x Speedup
(3 GPU v 2CPU)

Conclusion
• World could produce Zetaflops of compute –

but expensive

• Eventually some limiter will halt our progress

• Wasted cycles are now common with high-
level abstractions under the dogma of
productivity over performance – however not
sustainable

• Better abstractions, or good implementations
of them, are necessary for sustainable growth

– Same as all other industries limited by
energy – automotive/transport,
construction, manufacturing

