
Beyond Exascale (?)

- the sky’s the limit, or is it

sustainable? –

Satoshi Matsuoka

Tokyo Institute of Technology

How much “Flops” will the

world produce in 2020?
NVIDIA Tegra K1 (2013)

28nm, 384GFlops SFP
~10W

NVIDIA Tegra 2020
7nm 1TFlop DFP

~10W

2 Billion smartphones/year -> 2 x 1021
or 2 ZetaFlops @

20 GW (c.f. Entire Japan ~30 GW)

How much energy to drive it?
(Wattage Source Wikipedia)

• Assuming 50GFlops/W

– Global electricity usage: 2.11 TW-> 105 ZF

– Global energy usage: 17.1 TW -> 855 ZF

– Earth solar energy reception: 174 PW-> 610 YF

– Dyson sphere: 384 YW-> 1.92E37 Flops

– But are we making good use of the

capability? (x100 ~= 10 years)

We are starting to observe our fate:
Projected Performance Development

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

1E+11

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

SUM

N=1

N=500

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

1 Eflop/s

Microprocessor simulation

performance circa 1970s

• Hitachi Basic Master (1978)
– “The first PC in Japan”

– Motorola 6802--1Mhz, 16KB
ROM, 16KB RAM

– Linpack in BASIC: Approx. 70-
80 FLOPS

• We got “simulation” done (in
assembly language)
– Nintendo NES (1982)

• MOS Technology 6502 1Mhz
(Same as Apple II)

– “Pinball” by Matsuoka & Iwata
(now CEO Nintendo)
• Realtime dynamics + collision +

lots of shortcuts

• Average ~several KFLOPS

Cray-1 (1976)
Linpack

80-90MFlops
(est.)

Running Linpack 10

~x100

Where are we now?

• Google Petasort

(10 Tera Keys, 100

Byte Records)

(MapReduce)

– 2008: 4K nodes,

8h2m 460M keys/s

– 2011: 8K nodes,

33min, 5G Keys/s

– Our on memory GPU

sort with NV-link

1K nodes 60G Keys

c.f. Google Petasort(2011)

XPregel – X10-based Pregel-like Graph
Programming System for convergent architectures

XPregel optimizations on supercomputers

1. Utilize MPI collective communication.

2. Avoid serialization, which enables utilizing fast

supercomputer interconnects

3. Destination of messages computed by a simple bit

manipulation thanks to vertex id renumbering.

4. Optimized message communication when all vertices

send the same message to all the neighbor vertices.

5. Simple API in X10 language.

7

Performance Evaluation

0

10

20

30

40

50

16 32 64 128

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

RMAT

Random

ScaleGraph vs. Giraph, PBGL

Degree of Separation Degree of Separation

0

200

400

600

800

2 4 8 16

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

PBGL
Giraph
XPregel

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 128

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

RMAT

ScaleGraph vs. Giraph, PBGL

0

200

400

600

800

1000

1200

1400

1 2 4 8 16 32

El
ap

se
d

 T
im

e
(s

ec
o

n
d

s)

of nodes (TSUBAME2.5)

PBGL

Giraph

XPregel

9.4x Speedup

PageRank in Weak Scaling (Scale 22, 30 iterations)PageRank in Strong Scaling (Scale 25, 30 iterations)

HyperANF in Weak Scaling (B=5, Scale 22, 1 iterations)HyperANF in Strong Scaling (B=5, Scale 28, 1 iterations)

38.4x Speedup

Hamar (Highly Accelerated Map Reduce)
[IEEE Cluster 2014]

 A software framework for large-scale supercomputers
w/ many-core accelerators and local NVM devices
 Abstraction for deepening memory hierarchy

 Device memory on GPUs, DRAM, Flash devices, etc.

 Features
 Object-oriented

 C++-based implementation
 Easy adaptation to modern commodity

many-core accelerator/Flash devices w/ SDKs

 CUDA, OpenNVM, etc.
 Weak-scaling over 1000 GPUs

 TSUBAME2

 Out-of-core GPU data management
 Optimized data streaming between

device/host memory

 GPU-based external sorting

 Optimized data formats for
many-core accelerators
 Similar to JDS format

HAMAR Map/Reduce Implementation

• Optimizations for GPU accelerators
– Assign a warp (32 threads) per key for avoiding warp

divergence in Map/Reduce

– Overlapping computation on GPU and data transfer
between CPU and GPU

– Out-of-core GPU Sorting Algorithm

Map/
Reduce

Map/
Reduce

SortSort

Scan

Sort key-value for Scan

Compact keys to be unique

Overlap computation and
data transfer

Weak Scaling Performance
• PageRank application on TSUBAME 2.5
• Data size is larger than GPU memory capacity

0

500

1000

1500

2000

2500

3000

0 200 400 600 800 1000 1200

P
e

rf
o

rm
an

ce
 [

M
Ed

ge
s/

se
c]

Number of Compute Nodes

SCALE 23 - 24 per Node

1CPU (S23 per node)

1GPU (S23 per node)

2CPUs (S24 per node)

2GPUs (S24 per node)

3GPUs (S24 per node)

2.81 GE/s on 3072 GPUs
(SCALE 34)

2.10x Speedup
(3 GPU v 2CPU)

Conclusion
• World could produce Zetaflops of compute –

but expensive

• Eventually some limiter will halt our progress

• Wasted cycles are now common with high-
level abstractions under the dogma of
productivity over performance – however not
sustainable

• Better abstractions, or good implementations
of them, are necessary for sustainable growth

– Same as all other industries limited by
energy – automotive/transport,
construction, manufacturing

