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Outline 

・Monte Carlo Methods as scalable algorithms 
・Desirable characteristics of Pseudo-random    
   Number Generator(PRNG) 
・Parallelization of PRNGs 
・Application Areas 



Trends in HPC Architecture 

• Higher degree of parallelism (>Million cores) 
• Diminishing  memory size per core 
• Imbalance between CPU power and 

Bandwidth of Interconnecting network 
• More expensive to move data than  F.P. 

computation  
• Fault Resilience becoming very critical issue 
 



Advantages of Monte Carlo Methods  

- Many traditional algorithms are to be re-examined 
   because of bad scalability 
 
- Monte Carlo Methods are “embarrassingly parallel” 
    and highly scalable 
 
- Monte Carlo Methods require small memory size per core 
   because of geometry without discretization (no grid!) 
 
- Monte Carlo Methods are fault-resilient (to some extent) 
 

           Wider  use of Monte Carlo Method should be  
          considered in various application areas, such as  
          solving the Elliptic Partial Differential Equations  
  



John von Neumann wrote, 

“Any one who considers arithmetical 
methods of producing random digits 
is, of course, in a state of sin.” (1951) 

・Middle-square method 
・Mapping function: f（x）= 4 x(1-x) 
 

Various Techniques Used in Connection With Random Digits, 
Collected Works Vol. 5 pp.768-770  (1961) 



Important Features of PRNG Algorithms 

- Long Period 
 
- Good statistical quality (both serial and parallel) 
 
- High speed generation 
 
- Massively parallelizable in short time 
   (ability to jump-ahead / parallel seeds) 



Random Number Generation Algorithms 

(1) Linear Congruential Generator(LCG): X n = (a X n-1 + c) mod M 
        Multiplicative ：  c=0. →   Period = 2j-2 
        Mixed ：   c .ne. 0. → Period = 2j 
                  where M=2j （usually Machine Word Size) 
     - The period is short (especially if j=32) 
     - Undesirable characteristics for certain applications 
         (  i.e. hyperplanes in higher dimensions) 



64-bit LCGs Recommended by 
Forrest Brown(LANL) 

LA-UR-05-4983    Fundamentals of Monte  Carlo Particle Transport 

C.E.Haynes: LCG(6364136223846793005 ,0,2^64)   (Knuth,  Vol.2, p.107-108) 



(2) Binary M-sequence with Primitive Trinomial: 
  
      X n = (Xn-m + Xn-k ) mod 2 → Period  =  2k-1  (m<k) 
 
 

+ + 

SR0 SR5 SR6 SR4 SR3 SR2 SR1 

（Shift Register Sequence) 



Mersenne Twister 
• Evolved from a matrix formulation of M-sequence 
                Xn +p := xn+q + (xn | xn+1) A. 
• Very very long period （２＾１９９３７ －１） 
• Logical operations only 
• May have issues of generating the seeds for MPP 
      (My opinion) 
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(3) Generalized Fibonacci Method with 
Primitive Trinomial: 

SR0 SR5 SR6 SR4 SR3 SR2 SR1 

 X n = (Xn-m op.  Xn-k ) mod M → Period =(2k-1)2j-1~ 2 k+j-1 

                        where op. is  {+, -, *}. 

* Ranlux is a modification to Generalized Fibonacci Method 



(4) Generalized Recursive Method With Large 
Prime Modulus 

         (Multiple Recursive Generator or MRG) 

The Period is pk-1~ 2 j*k ,where p ~ 2 j is a Prime 
Number       (e.g., 2 31 – 1) 



From here on, consider   p=231 – 1 and  k = 8. 
       f(x) = (x8- a1x7 – a2x6 – a3x5 – a4x4 – a5x3 – a6x2 – a7x – a8)  mod ( p ) 

 

(1) Better chance of finding  a generator which possesses good Lattice Structure  
        with non-constrained full coefficients 
     dt > 1/sqrt(1 + a1

2 + a2
2 + a3

2 + a4
2 + a5

2 + a6
2 + a7

2 + a8
2 )  

       (Ref.  P.L’Ecuyer , INFORMS Journal on Computing, Vol.9, No.1,pp.57-60, 1997) 
 

(2) Reasonably long period: (231-1)8 – 1 ~  4.5*1074 
 

(3) Ease of applying to vector/parallel processing, due to  small   
     dimension of the states 

 

(4) Many primitive polynomials to choose from: 
           φ (pk – 1)/k/(pk – 1) = 2.2% 
(5) Simple and straight-forward implementation is possible 

Characteristics (and Advantages) of MRG  
with  8th-order Full Primitive Polynomials 



A Sample Polynomial with 
Good Lattice Structure (LatMRG) 

   where 
 a1 = 1089656042         a5 = 189748160 
   a2 = 1906537547         a6 = 1984088114  
   a3 = 1764115693         a7 = 626062218 
   a4 = 1304127872         a8 = 1927846343 
 p = 231 – 1=2147483647 
    Figure of Merit:  M32=.62729 
  
Out of 345597 tested polynomials with a8 as primitive roots,  
  31843 are primitive polynomials（9.2%）. 

Ref: Prof. Pierre L’Ecuyer, Univ. Montreal 

xn =  a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4
 + a5xn-5 + a6xn-6

 + a7xn-7 + a8xn-8  mod( p ) 



Other Reported  Full Polynomials  
with Good Lattice Structure 

  Grube-Dieter                Dieter                     L’Ecuyer 
 a1 = 518175991         a1 = 388425559      a1 = 2021422057  
   a2 = 510332243         a2 = 227651891      a2 = 1826992351 
   a3 = 71324449           a3 = 5412951           a3 = 1977753457  

xn =  a1xn-1
 + a2xn-2

 + a3xn-3   mod( p ), where p=231 -1 =2147483647 

xn =  a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4 mod( p ), where p=231 -1 =2147483647 

    L’Ecuyer 
 a1 = 2001982722 
   a2 = 1412284257 
   a3 = 1155380217            
   a4 = 1668339922 
Ref.  http://crypto.mat.sbg.ac.at/results/karl/server/node7.html 

3rd Order: 

4th Order: 



Performance Measurement of MRG8 
on Machines with Different Architectures 

       System                            Architecture              Clock               Peak                 Rate of                   
                      Performance       Generation 
                         （GHｚ）     (Gflops)         (106 dp rng/sec) 

 
    Fujitsu VPP5000          Vector（Proprietary)       .3                    9.6                201.8 
       NEC SX-6                    Vector（Proprietary)            .5                    8.0                    224.3  
   Fujitsu PrimePower      Scalar (Sparc64V)              1.3                   5.2                      23.2 
     HPC2500  
   IBM p-series 690          Scalar (Power4)                  1.3                   5.2                      11.4 
    SGI Altix3700        Scalar (Itanium 2)             1.3                   5.2                 39.7 
   AMD Opteron               Scalar                                 2.0                   4.0                      34.0 

 
  Intel Woodcrest Xeon   Scalar (1 core)                     2.66                10.6                   108.1 
   Fujitsu Primergy      Scalar（Xeon EM64T)          3.6                     7.2                     79.9 
       RX200S2 
 Fujitsu PrimeQuest480 Scalar (Itanium 2)                1.5                     6.0                     80.3 
   Fujitsu PrimeQuest      Scalar (Itanium2)              1.6        6.4                 83.5 
  RXI300 
RIKEN/Fujitsu “K”           Scalar (SPARC64VIIIfx)              2.0                 16.0                     34.5 
                                                               (1 core)                                                                                              (2 Integer Ops./clock)  

As of  8/10/06 
Rev. 06/14/11 

  



10100   10200    10300     10400                10500        10600                     Period 

20 

10 

30 

Order of Recurrence vs  Rate of Generation 

MRG 8 

MRG 16 

MRG 32 
MRG 64 

MRG 4 

Platform:Fujitsu PrimePower HPC2500 

   

Rate of G
eneration (M

illion rng/sec) 

MRG 2 



Empirical Test of PRNG (TestU01) 

• TestU01 is a set of utilities for testing RNG 
– P. L'Ecuyer and R. Simard, University of Montreal 

• Three pre-defined batteries of tests 
– SmallCrush 

• 15 statistical tests, uses 27 random numbers 

– Crush 
• 186 statistical tests, uses 235 random numbers 

– BigCrush 
• 234 statistical tests, uses 238 random numbers 

 
 



BigCrush Test of PRNGs 
 SPRNG 
 Pass: LFG, MLFG, CMRG 
 Fail: LCG, LCG64, PMLCG 

 TRNG 
 Pass: LCG64_shift, MRG3, MRG4, MRG5, MRG3s, MRG5s, YARN2, 

YARN3, YARN4, YARN5, YARN3s, YARN5s 
 Fail: LCG64, MRG2, MT19937, MT19937_64z 

 Random123 
 Pass: Threefry, Philox, AES NI, ARS 

 MRG8 
 Pass: MRG8 



Parallelization （1） 
 ～ Random Initialization ～     

Same as “Birthday Paradox” (e.g., Feller) 
• Period of Random Numbers：N 
     Usage of Random Numbers in each process/thread：n 
     Total number of chunks which should not overlap: N/n = m 
     Total Number of Cores：p  
 
• Probability of no collision = 1・(1-1/m)・(1-2/m)・・・・（1-(p-1)/m) 
       ~=  1 -1/m-2/m- ・・・・-(p-1)/m = 1 - (p-1)p/(2 m) 
 
 Probability that at least one collision occurs ~= （p-1)p/(2m) 
 
Example：N=10^74, n=10^15, m=10^59, p=10^6  →  ~ 5・10^( - 48) 
 
But,  Donald Knuth’s advice is: 
  “Random number generators should not be chosen at random” 



X0 X1 
X4 

X8 

X16 

a 
a2 

a4 

a8 

a16 

X2 

Xn+1 = a Xn  mod(M) 

Parallelization （2） 
~ Jump-Ahead (First Order Recurrence) ~ 



Define a Transfer Matrix A: 

             a1  a2  a3   a4   a5  a6  a7   a8  
             1   0   0   0   0   0   0   0 
             0   1   0   0   0   0   0   0 
             0   0   1   0   0   0   0   0  
A  =      0   0   0   1   0   0   0   0  
             0   0   0   0   1   0   0   0  
             0   0   0   0   0   1   0   0  
             0   0   0   0   0   0   1   0       ,       

 
 

              

        xn-1  

            xn-2 

            xn-3  
x  =   xn-4 

            xn-5  

            xn-6 

            xn-7 
        xn-8     , 

        xn  

            xn-1 

            xn-2  
x’ =   xn-3 

            xn-4  

            xn-5 

            xn-6 
        xn-7 

Then     x’ = A x Mod(p). 

xn =  a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4
 + a5xn-5 + a6xn-6

 + a7xn-7 + a8xn-8  mod( p ) 

Parallelization （2） 
~ Jump-Ahead (the 8th Order Recurrence) ~ 



Jumping Ahead the Sequence of MRG 

X4 

X0 X1 
X7 

X16 
A16 

X2 

X’  = A X  mod(M) 

X19 

X17 

X23 

X 

X’’’’ 

X8 

X’ 

A: Transfer Matrix 



In order to compute  xn = An x0 mod(p) for an arbitrary  n: 
(1) Compute and store Aj = A2 j  mod(p)

  
(j=0,1,2,3,4,……). 

(2) Represent “n” in the binary form,  
                   e.g., (bm-1,…..,b2,b1,b0). 
(3) Multiply Aj mod(p)’s together only when bj=1  

(j=0,….,m-1), to obtain An. 
 

Note: The same strategy works with the polynomial formulation with fewer 
arithmetic operations (Knuth).  

Jump-Ahead for Arbitrary Distance 



Item Specification 

No. of cores 16 

Level 2 cache 12 MB 

Operating frequency 1.848 GHz 

Process technology 40-nm CMOS 

Die size 21.9 mm × 22.1 mm 

No. of transistors Approx. 1.87 billion 

Peak performance 236 gigaflop/s 

Memory bandwidth 85 GB/s (theoretical peak value) 

Power consumption 110 W (process condition: TYP) 

Fujitsu SPARC64 IXfx specifications 
 



Implementation of MRG8 on Fujitsu FX10 
(16 cores/node, clock:1.848 GHz) 

 
• Parallelization for 16 threads with OpenMP 
• Initialization Time = 0.208 + .696*M (��sec)       

where M is the number of 1’s in the binary representation of 
the Jump distance N  

• Generation Time of a PRN = 0.031 (��sec) 
     =>  32 Million PRN/sec/thread 
• Work in Progress (MPI version across nodes) 



Random Number Testing on Quantum 
Diffusion Monte Carlo Application 

Ref.  K.Hongo, R.Maezono and K.Miura,  J. Comp. Chem. 31 ,pp.2186-2194 2010 



Revisiting Monte Carlo Methods 
 

The Monte Carlo Methods (MCMs) were 
systematically studied in the early days of computing 

in various application areas. 
 
  - Elliptic Partial Differential equations 
        △u =0     (Laplace Equation 
        △u =f      (Poisson’s Equation) 
        △u – ���u=0 (Linearized Poisson-Boltzmann Eq.) 
      with u=g on the boundary (Dirichlet B.C.) 
  
   - System of Linear Equations 
   - Eigenvalue Problems 

2 



Example: Laplace’s Equation 

１．Finite Difference Method/finite Element Method 
２．Boundary Element Method 
３．Monte Carlo Methods 

    -  Walk on Spheres Method  
     -  Walk on Rectangles Method  
     -  Walk on Boundary Method     
 

Potential calculation in electromagnetics etc 

∆Ψ = 0  in Γ 
  Ψ =  g on γ 



Comparison of Three Methods 

・ FDM/FEM → All the values on the grid need to be 
                            calculated 
• BEM → The boundary equation has to be  
                  re-calculated everytime the boundary values 
                  are changed 
• MCM → 
        - There is no Grid points (Direct calculation) 
      -   even if the boundary values are dynamically 
                      modified, calculation can be done    
                     immediately  



Example: Laplace’s equation (cont.) 

No need to perform random walks on grid points 
→Walk on Spheres (WOS) Method* 

∆ Ψ = 0  in Γ 
 Ψ =  g on γ g(x,y) 

Γ 

γ 

P 

-a a 

b 

-b 

1 1 

0 

0 

ε: Error Bound 

ε 

* 



Example: (x=0, y=0, ε =.0001)�

No. of Walks         Solution       Final Radius           No. of RNs              
 
       10,000             .5098         1.3661 10-5                    121,291               
  
        40,000            .50265       1.06 012 10-5                484,677               
 
  1,000,000            .499734      1.71094 10-6           12,083,215               
  
      Exact                .50000          

ε= 10-4: takes ~12 Walks on the average 
          (Theoretically proportional to log(ε） 



Conclusion 

• With the recent trends in HPC architecture in 
the Million-core era, some of the traditional 
numerical algorithms need to be reconsidered 
due to their poor scalability. 

• Monte Carlo Methods can be used to 
efficiently  solve wider class of problems 

• Random number support for massively 
parallel processing is essential. 
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