
Prospects for Monte Carlo Methods
in Million Processor-core Era

and Beyond

July 9, 2014

Kenichi Miura, Ph.D.

Professor Emeritus
National Institute of Informatics

Tokyo, Japan

Outline

・Monte Carlo Methods as scalable algorithms
・Desirable characteristics of Pseudo-random
 Number Generator(PRNG)
・Parallelization of PRNGs
・Application Areas

Trends in HPC Architecture

• Higher degree of parallelism (>Million cores)
• Diminishing memory size per core
• Imbalance between CPU power and

Bandwidth of Interconnecting network
• More expensive to move data than F.P.

computation
• Fault Resilience becoming very critical issue

Advantages of Monte Carlo Methods

- Many traditional algorithms are to be re-examined
 because of bad scalability

- Monte Carlo Methods are “embarrassingly parallel”
 and highly scalable

- Monte Carlo Methods require small memory size per core
 because of geometry without discretization (no grid!)

- Monte Carlo Methods are fault-resilient (to some extent)

 Wider use of Monte Carlo Method should be
 considered in various application areas, such as
 solving the Elliptic Partial Differential Equations

John von Neumann wrote,

“Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.” (1951)

・Middle-square method
・Mapping function: f（x）= 4 x(1-x)

Various Techniques Used in Connection With Random Digits,
Collected Works Vol. 5 pp.768-770 (1961)

Important Features of PRNG Algorithms

- Long Period

- Good statistical quality (both serial and parallel)

- High speed generation

- Massively parallelizable in short time
 (ability to jump-ahead / parallel seeds)

Random Number Generation Algorithms

(1) Linear Congruential Generator(LCG): X n = (a X n-1 + c) mod M
 Multiplicative ： c=0. → Period = 2j-2
 Mixed ： c .ne. 0. → Period = 2j
 where M=2j （usually Machine Word Size)
 - The period is short (especially if j=32)
 - Undesirable characteristics for certain applications
 (i.e. hyperplanes in higher dimensions)

64-bit LCGs Recommended by
Forrest Brown(LANL)

LA-UR-05-4983 Fundamentals of Monte Carlo Particle Transport

C.E.Haynes: LCG(6364136223846793005 ,0,2^64) (Knuth, Vol.2, p.107-108)

(2) Binary M-sequence with Primitive Trinomial:

 X n = (Xn-m + Xn-k) mod 2 → Period = 2k-1 (m<k)

+ +

SR0 SR5 SR6 SR4 SR3 SR2 SR1

（Shift Register Sequence)

Mersenne Twister
• Evolved from a matrix formulation of M-sequence
 Xn +p := xn+q + (xn | xn+1) A.
• Very very long period （２＾１９９３７ －１）
• Logical operations only
• May have issues of generating the seeds for MPP
 (My opinion)

 B

*
+

=

xn+p

xn+q

xn xn+1 A

* Rn+p P=624
q=397
r=31

Upper r lower

tempering

Concatenation

(3) Generalized Fibonacci Method with
Primitive Trinomial:

SR0 SR5 SR6 SR4 SR3 SR2 SR1

 X n = (Xn-m op. Xn-k) mod M → Period =(2k-1)2j-1~ 2 k+j-1

 where op. is {+, -, *}.

* Ranlux is a modification to Generalized Fibonacci Method

(4) Generalized Recursive Method With Large
Prime Modulus

 (Multiple Recursive Generator or MRG)

The Period is pk-1~ 2 j*k ,where p ~ 2 j is a Prime
Number (e.g., 2 31 – 1)

From here on, consider p=231 – 1 and k = 8.
 f(x) = (x8- a1x7 – a2x6 – a3x5 – a4x4 – a5x3 – a6x2 – a7x – a8) mod (p)

(1) Better chance of finding a generator which possesses good Lattice Structure
 with non-constrained full coefficients
 dt > 1/sqrt(1 + a1

2 + a2
2 + a3

2 + a4
2 + a5

2 + a6
2 + a7

2 + a8
2)

 (Ref. P.L’Ecuyer , INFORMS Journal on Computing, Vol.9, No.1,pp.57-60, 1997)

(2) Reasonably long period: (231-1)8 – 1 ~ 4.5*1074

(3) Ease of applying to vector/parallel processing, due to small
 dimension of the states

(4) Many primitive polynomials to choose from:
 φ (pk – 1)/k/(pk – 1) = 2.2%
(5) Simple and straight-forward implementation is possible

Characteristics (and Advantages) of MRG
with 8th-order Full Primitive Polynomials

A Sample Polynomial with
Good Lattice Structure (LatMRG)

 where
 a1 = 1089656042 a5 = 189748160
 a2 = 1906537547 a6 = 1984088114
 a3 = 1764115693 a7 = 626062218
 a4 = 1304127872 a8 = 1927846343
 p = 231 – 1=2147483647
 Figure of Merit: M32=.62729

Out of 345597 tested polynomials with a8 as primitive roots,
 31843 are primitive polynomials（9.2%）.

Ref: Prof. Pierre L’Ecuyer, Univ. Montreal

xn = a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4
 + a5xn-5 + a6xn-6

 + a7xn-7 + a8xn-8 mod(p)

Other Reported Full Polynomials
with Good Lattice Structure

 Grube-Dieter Dieter L’Ecuyer
 a1 = 518175991 a1 = 388425559 a1 = 2021422057
 a2 = 510332243 a2 = 227651891 a2 = 1826992351
 a3 = 71324449 a3 = 5412951 a3 = 1977753457

xn = a1xn-1
 + a2xn-2

 + a3xn-3 mod(p), where p=231 -1 =2147483647

xn = a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4 mod(p), where p=231 -1 =2147483647

 L’Ecuyer
 a1 = 2001982722
 a2 = 1412284257
 a3 = 1155380217
 a4 = 1668339922
Ref. http://crypto.mat.sbg.ac.at/results/karl/server/node7.html

3rd Order:

4th Order:

Performance Measurement of MRG8
on Machines with Different Architectures

 System Architecture Clock Peak Rate of
 Performance Generation
 （GHｚ） (Gflops) (106 dp rng/sec)

 Fujitsu VPP5000 Vector（Proprietary) .3 9.6 201.8
 NEC SX-6 Vector（Proprietary) .5 8.0 224.3
 Fujitsu PrimePower Scalar (Sparc64V) 1.3 5.2 23.2
 HPC2500
 IBM p-series 690 Scalar (Power4) 1.3 5.2 11.4
 SGI Altix3700 Scalar (Itanium 2) 1.3 5.2 39.7
 AMD Opteron Scalar 2.0 4.0 34.0

 Intel Woodcrest Xeon Scalar (1 core) 2.66 10.6 108.1
 Fujitsu Primergy Scalar（Xeon EM64T) 3.6 7.2 79.9
 RX200S2
 Fujitsu PrimeQuest480 Scalar (Itanium 2) 1.5 6.0 80.3
 Fujitsu PrimeQuest Scalar (Itanium2) 1.6 6.4 83.5
 RXI300
RIKEN/Fujitsu “K” Scalar (SPARC64VIIIfx) 2.0 16.0 34.5
 (1 core) (2 Integer Ops./clock)

As of 8/10/06
Rev. 06/14/11

10100 10200 10300 10400 10500 10600 Period

20

10

30

Order of Recurrence vs Rate of Generation

MRG 8

MRG 16

MRG 32
MRG 64

MRG 4

Platform:Fujitsu PrimePower HPC2500

Rate of G
eneration (M

illion rng/sec)

MRG 2

Empirical Test of PRNG (TestU01)

• TestU01 is a set of utilities for testing RNG
– P. L'Ecuyer and R. Simard, University of Montreal

• Three pre-defined batteries of tests
– SmallCrush

• 15 statistical tests, uses 27 random numbers

– Crush
• 186 statistical tests, uses 235 random numbers

– BigCrush
• 234 statistical tests, uses 238 random numbers

BigCrush Test of PRNGs
 SPRNG
 Pass: LFG, MLFG, CMRG
 Fail: LCG, LCG64, PMLCG

 TRNG
 Pass: LCG64_shift, MRG3, MRG4, MRG5, MRG3s, MRG5s, YARN2,

YARN3, YARN4, YARN5, YARN3s, YARN5s
 Fail: LCG64, MRG2, MT19937, MT19937_64z

 Random123
 Pass: Threefry, Philox, AES NI, ARS

 MRG8
 Pass: MRG8

Parallelization （1）
 ～ Random Initialization ～

Same as “Birthday Paradox” (e.g., Feller)
• Period of Random Numbers：N
 Usage of Random Numbers in each process/thread：n
 Total number of chunks which should not overlap: N/n = m
 Total Number of Cores：p

• Probability of no collision = 1・(1-1/m)・(1-2/m)・・・・（1-(p-1)/m)
 ~= 1 -1/m-2/m- ・・・・-(p-1)/m = 1 - (p-1)p/(2 m)

 Probability that at least one collision occurs ~= （p-1)p/(2m)

Example：N=10^74, n=10^15, m=10^59, p=10^6 → ~ 5・10^(- 48)

But, Donald Knuth’s advice is:
 “Random number generators should not be chosen at random”

X0 X1
X4

X8

X16

a
a2

a4

a8

a16

X2

Xn+1 = a Xn mod(M)

Parallelization （2）
~ Jump-Ahead (First Order Recurrence) ~

Define a Transfer Matrix A:

 a1 a2 a3 a4 a5 a6 a7 a8
 1 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 0 0
A = 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 1 0 ,

 xn-1

 xn-2

 xn-3
x = xn-4

 xn-5

 xn-6

 xn-7
 xn-8 ,

 xn

 xn-1

 xn-2
x’ = xn-3

 xn-4

 xn-5

 xn-6
 xn-7

Then x’ = A x Mod(p).

xn = a1xn-1
 + a2xn-2

 + a3xn-3 + a4xn-4
 + a5xn-5 + a6xn-6

 + a7xn-7 + a8xn-8 mod(p)

Parallelization （2）
~ Jump-Ahead (the 8th Order Recurrence) ~

Jumping Ahead the Sequence of MRG

X4

X0 X1
X7

X16
A16

X2

X’ = A X mod(M)

X19

X17

X23

X

X’’’’

X8

X’

A: Transfer Matrix

In order to compute xn = An x0 mod(p) for an arbitrary n:
(1) Compute and store Aj = A2 j mod(p)

(j=0,1,2,3,4,……).

(2) Represent “n” in the binary form,
 e.g., (bm-1,…..,b2,b1,b0).
(3) Multiply Aj mod(p)’s together only when bj=1

(j=0,….,m-1), to obtain An.

Note: The same strategy works with the polynomial formulation with fewer
arithmetic operations (Knuth).

Jump-Ahead for Arbitrary Distance

Item Specification

No. of cores 16

Level 2 cache 12 MB

Operating frequency 1.848 GHz

Process technology 40-nm CMOS

Die size 21.9 mm × 22.1 mm

No. of transistors Approx. 1.87 billion

Peak performance 236 gigaflop/s

Memory bandwidth 85 GB/s (theoretical peak value)

Power consumption 110 W (process condition: TYP)

Fujitsu SPARC64 IXfx specifications

Implementation of MRG8 on Fujitsu FX10
(16 cores/node, clock:1.848 GHz)

• Parallelization for 16 threads with OpenMP
• Initialization Time = 0.208 + .696*M (��sec)

where M is the number of 1’s in the binary representation of
the Jump distance N

• Generation Time of a PRN = 0.031 (��sec)
 => 32 Million PRN/sec/thread
• Work in Progress (MPI version across nodes)

Random Number Testing on Quantum
Diffusion Monte Carlo Application

Ref. K.Hongo, R.Maezono and K.Miura, J. Comp. Chem. 31 ,pp.2186-2194 2010

Revisiting Monte Carlo Methods

The Monte Carlo Methods (MCMs) were
systematically studied in the early days of computing

in various application areas.

 - Elliptic Partial Differential equations
 △u =0 (Laplace Equation
 △u =f (Poisson’s Equation)
 △u – ���u=0 (Linearized Poisson-Boltzmann Eq.)
 with u=g on the boundary (Dirichlet B.C.)

 - System of Linear Equations
 - Eigenvalue Problems

2

Example: Laplace’s Equation

１．Finite Difference Method/finite Element Method
２．Boundary Element Method
３．Monte Carlo Methods

 - Walk on Spheres Method
 - Walk on Rectangles Method
 - Walk on Boundary Method

Potential calculation in electromagnetics etc

∆Ψ = 0 in Γ
 Ψ = g on γ

Comparison of Three Methods

・ FDM/FEM → All the values on the grid need to be
 calculated
• BEM → The boundary equation has to be
 re-calculated everytime the boundary values
 are changed
• MCM →
 - There is no Grid points (Direct calculation)
 - even if the boundary values are dynamically
 modified, calculation can be done
 immediately

Example: Laplace’s equation (cont.)

No need to perform random walks on grid points
→Walk on Spheres (WOS) Method*

∆ Ψ = 0 in Γ
 Ψ = g on γ g(x,y)

Γ

γ

P

-a a

b

-b

1 1

0

0

ε: Error Bound

ε

*

Example: (x=0, y=0, ε =.0001)�

No. of Walks Solution Final Radius No. of RNs

 10,000 .5098 1.3661 10-5 121,291

 40,000 .50265 1.06 012 10-5 484,677

 1,000,000 .499734 1.71094 10-6 12,083,215

 Exact .50000

ε= 10-4: takes ~12 Walks on the average
 (Theoretically proportional to log(ε）

Conclusion

• With the recent trends in HPC architecture in
the Million-core era, some of the traditional
numerical algorithms need to be reconsidered
due to their poor scalability.

• Monte Carlo Methods can be used to
efficiently solve wider class of problems

• Random number support for massively
parallel processing is essential.

Acknowledgement

• Prof. P.L’Ecuyer : Sample Primitive Polynomials
• Dr. C.Chen at Fujitsu Computer System :
 Measurement on VPP5000, Primergy, PrimeQuest
• Dr. M.Kurokawa, RIKEN:
 Measurement on SX-6, Woodcrest
• Mr. Hayakawa, AMD Japan:
 Measurement on AMD Opteron
• Mr. Hotta, Fujitsu Limited (Makuhari):
 Measurement on Sparc64VIIIfx
• Mr. Yamanaka and Mr.Takeshige, Fujitsu Limited:
 Parallelization of MRG8 and measurement on FX10

The author would like to thank

Thank you !

	Prospects for Monte Carlo Methods in Million Processor-core Era �and Beyond
	Outline
	Trends in HPC Architecture
	Advantages of Monte Carlo Methods
	John von Neumann wrote,
	Important Features of PRNG Algorithms
	スライド番号 7
	64-bit LCGs Recommended by　Forrest Brown(LANL)
	スライド番号 9
	Mersenne Twister
	スライド番号 11
	スライド番号 12
	スライド番号 13
	スライド番号 14
	スライド番号 15
	スライド番号 16
	スライド番号 17
	Empirical Test of PRNG (TestU01)
	BigCrush Test of PRNGs
	スライド番号 20
	スライド番号 21
	Parallelization （2）�~　Jump-Ahead (the 8th Order Recurrence) ~
	スライド番号 23
	スライド番号 24
	スライド番号 25
	Implementation of MRG8 on Fujitsu FX10�(16 cores/node, clock:1.848 GHz)�
	スライド番号 27
	スライド番号 28
	スライド番号 29
	スライド番号 30
	スライド番号 31
	スライド番号 32
	Conclusion
	スライド番号 34
	スライド番号 35

