Scalability in the Cloud

HPC Convergence with Big Data in Design, Engineering, Manufacturing

July 7, 2014

David Pellerin, Business Development Principal Amazon Web Services

What Do We Hear From Customers?

Want to run larger HPC workloads, more often

- Need to scale up and scale out for faster results
- Want to run more jobs for higher quality of results

Need to globally collaborate on critical data

- To enhance the productivity of distributed teams
- To operate globally, with greater data governance

Need to manage large, diverse datasets

- Ingest and analyze, query, and take action
- Including connected devices, Internet-of-Things

A "Cloud First" Strategy at HGST

HGST a Western Digital company

Zero to Cloud in 6+ Month

By 31 Oct 2013:

- ✓ Cloud eMail Microsoft Office365
- ✓ Cloud eMail archiving/eDiscovery
- ✓ External SingleSignOn (off VPN)
- ✓ Cloud File/Collaboration BOX
- ✓ Cloud CRM Salesforce.com
 - ✓ Integrated to save files in BOX
- ✓ Cloud–High Performance Computing (HPC) on <u>Amazon AWS</u>

✓ Cloud – Big Data Platform on Amazon AWS

amazon

HGST

"HGST is using the cloud for a higher performance, lower cost, faster deployed solution vs buying a huge on-site cluster."

- Steve Philpott, CIO

HGST's Amazon HPC Platform

HGST HPC and big data roadmap:

- ✓ Molecular dynamics simulations
- $\checkmark\,$ Collaboration tools for engineering
- ✓ Big data for manufacturing yield analysis
- ✓ CAD, CFD, EDA "cloud first"

Every application presents unique challenges... some technical, some business

Computer-Aided Design, Simulation, Analysis, Visualization

• Across industries, the trend is <u>Simulation-Driven Design and Discovery</u>

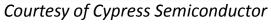
Examples in Design and Manufacturing

- Computer-Aided Design
- Electronic Design Automation
- Computational Fluid Dynamics
- Molecular Modeling
- Seismic Modeling and Reservoir Simulations

Cloud enables scalable simulations for global manufacturers

Cloud also enables HPC convergence with big data

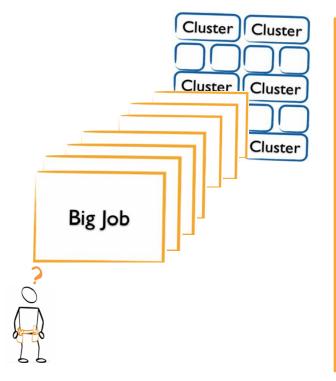
A. Gourevitch Cypress Semiconductor Corp., San Jose, CA, USA


Simulations for Electronic Product Design

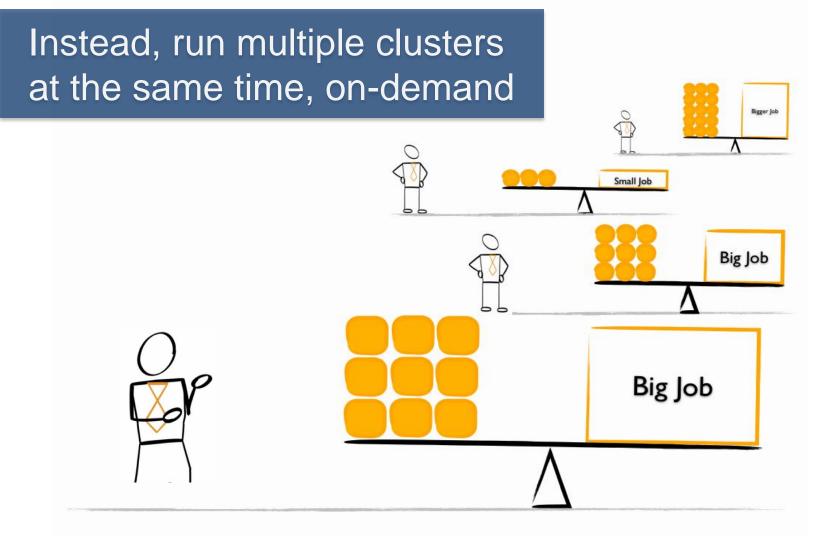
We report an implementation of parallel computing on Amazon Web Services[™] (AWS) for touchsensor modeling. COMSOL Multiphysics[®] was used to simulate an electromagnetic field distribution in a capacitive sensor assembly. Multiple COMSOL jobs were deployed on separate AWS instances and were executed in parallel. The simulation results indicate that implementation of parallel computing for COMSOL simulations can significantly reduce the computational time required for optimization of capacitive touch sensor patterns.

Files Available for Download Abstract Paper

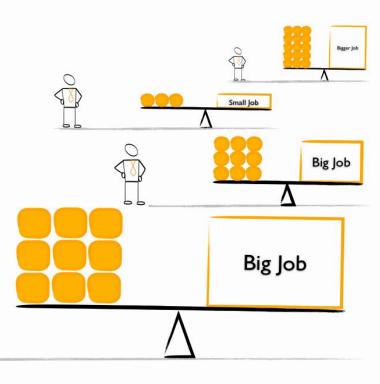
No job queue... Using cloud, simulation sweeps are possible in hours instead of weeks



Job Queues Are Evil!

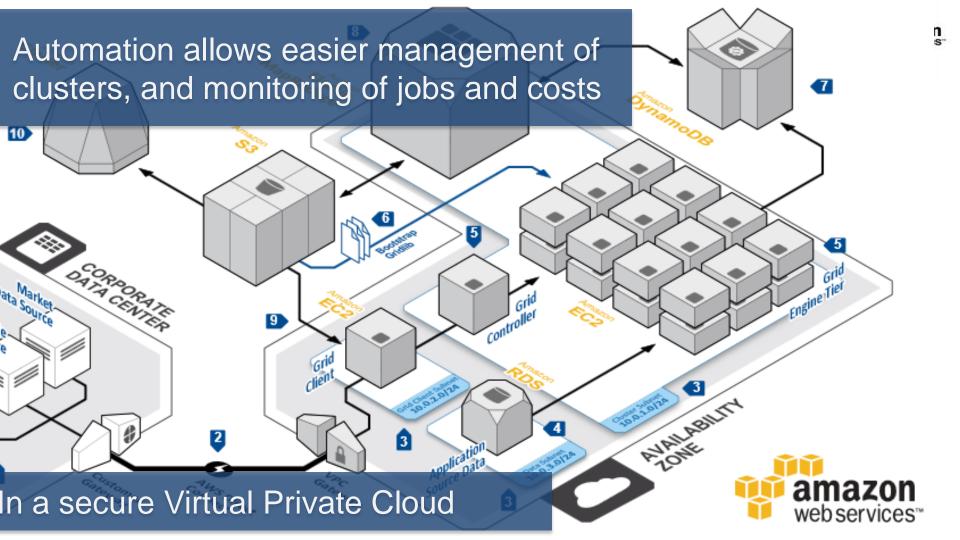


Conflicting goals

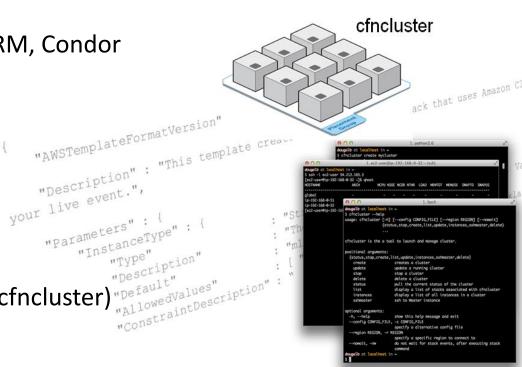

- HPC users seek fastest possible time-to-results
- IT support team seeks highest possible utilization

Result:

- The job queue becomes the capacity buffer
- Users are frustrated and run fewer simulations, or they try to game the system
- Money is being saved, but for the wrong reasons!



Match the Architectures to the Jobs


Instance Family	Instance Type	Processor Arch	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	EBS- optimized Available	Network Performance
Compute optimized	c3.large	64-bit	2	7	3.75	2 x 16 SSD	-	Moderate
Compute optimized	c3.xlarge	64-bit	4	14	7.5	2 x 40 SSD	Yes	Moderate
Compute optimized	c3.2xlarge	64-bit	8	28	15	2 x 80 SSD	Yes	High
Compute optimized	c3.4xlarge	64-bit	16	55	30	2 x 160 SSD	Yes	High
Compute optimized	c3.8xlarge	64-bit	32	108	60	2 x 320 SSD	-	10 Gigabit⁴

Instance Family	Instance Type	Processor Arch	vCPU	ECU	Memory (GiB)	Instance Storage (GB)	EBS- optimized Available	Network Performance
Storage optimized	i2.xlarge	64-bit	4	14	30.5	1 x 800 SSD	Yes	Moderate
Storage optimized	i2.2xlarge	64-bit	8	27	61	2 x 800 SSD	Yes	High
Storage optimized	i2.4xlarge	64-bit	16	53	122	4 x 800 SSD	Yes	High
Storage optimized	i2.8xlarge	64-bit	32	104	244	8 x 800 SSD	-	10 Gigabit ⁴

Many HPC Deployment Methods

- Traditional HPC schedulers and cluster managers
 - MOAB/Torque, Bright
 - LSF/OpenLava, Grid Engine, SLURM, Condor
- "Born in the cloud" tools
 - MIT StarCluster
 - Cycle Computing CycleServer
- AWS-provided tools and APIs
 - Cloudformation, Auto Scaling
 - cfncluster (github.com/awslabs/cfncluster)

Multiple Consumption Models

On-Demand

Pay for compute capacity by the hour with no long-term commitments

For spiky workloads, or to define needs

Reserved

Make a low, one-time payment and receive a significant discount on the hourly charge

For committed utilization

nmitted

For time-insensitive or transient workloads

Spot

Bid for unused capacity,

charged at a Spot Price

which fluctuates based

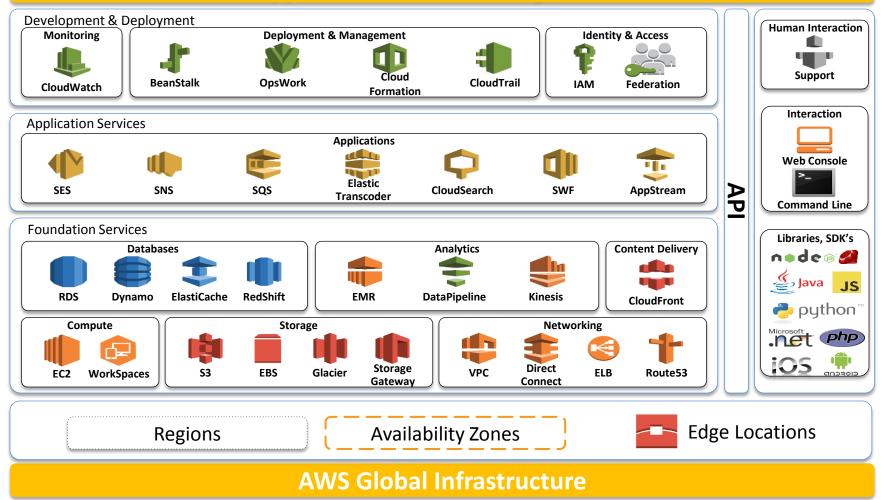
on supply and demand

Dedicated

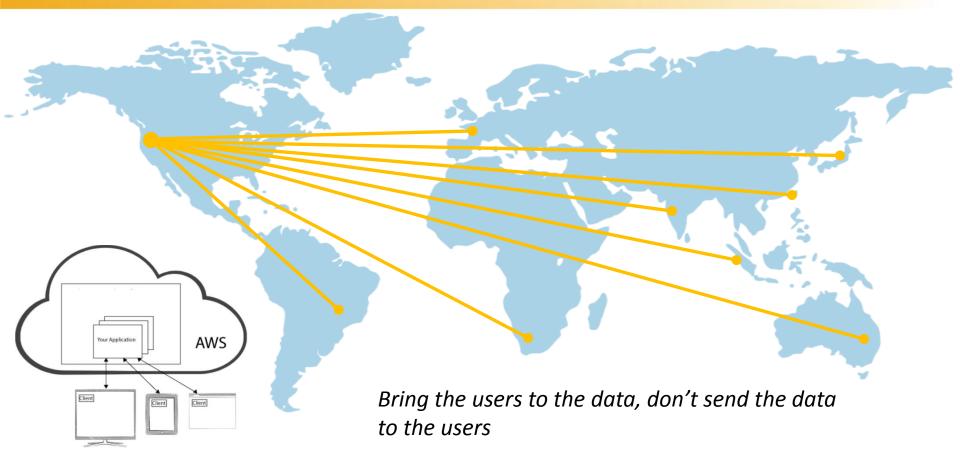
Launch instances within Amazon VPC that run on hardware dedicated to a single customer

For highly sensitive or compliance related workloads

Spot Instances for Scale-Out Computing


Metric Count LEADER IN CONDOR GRID COMPUTING SOLUTIONS **Compute Hours of Work** 2,312,959 hours **Compute Days of Work** 96,373 days **Compute Years of Work** 264 years Reporting Monitoring **Molecule Count** 205,000 materials Pending: 56 **Run Time** < 18 hours Running: 156314 Max Scale (cores) 156,314 cores across 8 regions Shutting-down: 126 Max Scale (instances) 16,788 instances Running Cores: 5 _Timestamp: 11/3/13 8:17 PM 150000 18 hours 205,000 materials analyzed 100000 156,314 AWS Spot cores at peak 2.3M core-hours 50000 Total spending: \$33K Mark E. Thompson (Under 1.5 cents per core-hour) University of Southern California 10:00 12:00 14:0016:00 20:00 22:00 02:00 04: 18:00 04Nov

The Democratizing of HPC


- Deployed in one AWS region (we have 10)
- In one availability zone in that region
- Using one placement group in that AZ
- Consisting entirely of one new instance type (c3.8xlarge)
- Brought up, benchmarked, and torn down in hours

Customer Applications – Built on Higher Level Services

Cloud Collaboration is Secure Collaboration

Collaboration is More Secure in the Cloud

Collaboration is More Secure in the Cloud

The BaseSpace Data Model

the security provided by many institutional IT infrastructures.

Processing a flow cell on a sequencing instrument produces a variety of files, collectively referred to as a run. A run contains log files, instrument health data, run motrics, and base call information (*bd files), which are demultiplexed in BaseSpace to create the samples used in secondary analysis.¹ Data transfer is the major part of communication between the genomic sequencing instruments and the data analysis and storage servers. Illumina has implemented several security measures to make sure your data is protected in flight.

Secure Connection to Instrument

The decision to send data to BaseSpace is always initiated by the user during run set-up. If BaseSpace is chosen, the run is authenticated against and tracked to a user's BaseSpace / MvIllumina account. The

Alex Dickinson Senior VP of Cloud Genomics

YOULI

Collaboration with Secure Remote Access

Data and computation hosted in a secure, customer-managed virtual private cloud, with controlled access via a wide variety of client devices.

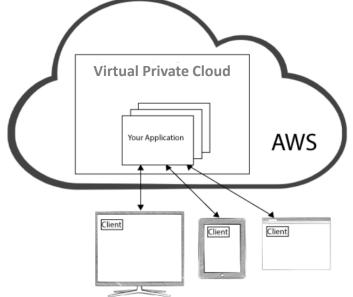
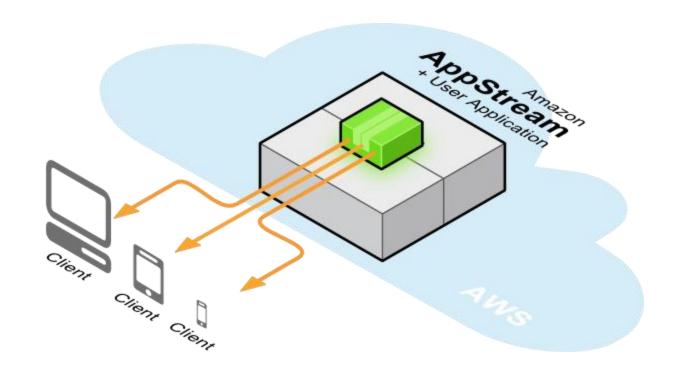


Image courtesy of Calgary Scientific

NVIDIA GRID K520 in AWS Cloud

Product Name	GRID K520			
GPUs	2 x GK104 GPUs			
CUDA cores	3,072 (1,536 per GPU)			
Core Clocks	800 MHz			
Memory Size	8GB GDDR5 (4GB per GPU)			
HW Video Encoder	2x h.264 (1 per GPU)			
Power Consumption	225W			
Supported APIs	OpenGL 4.3, DirectX 9, 10, 11, CUDA 5.5, OpenCL 1.1, NVFBC, NVIFR, NVENC			

Application Streaming Middleware

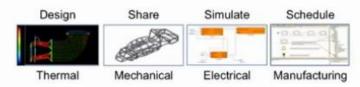


Amazon AppStream

- Application
 Streaming
- Remote visualization
- Thin client 3D applications

Cloud Plus Big Data Equals Awesome

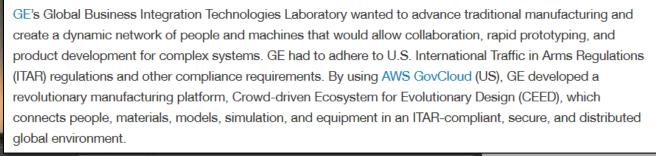
Integration of Big Data and HPC via Cloud


GE on AWS

e am web

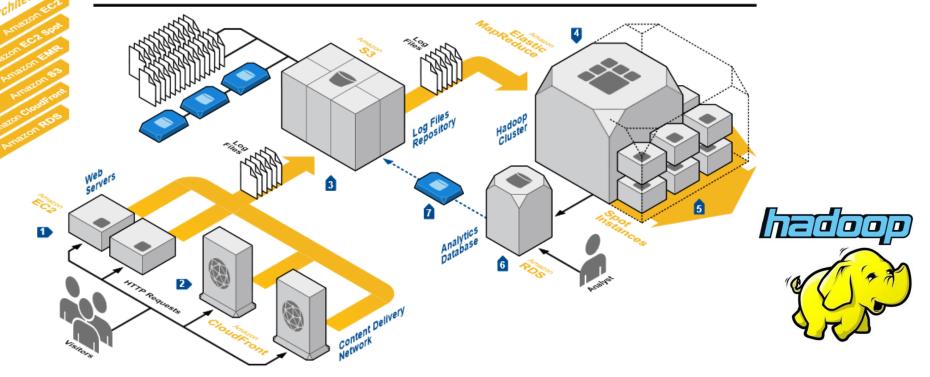
JOSEPH J. SALVO MANAGER, GE

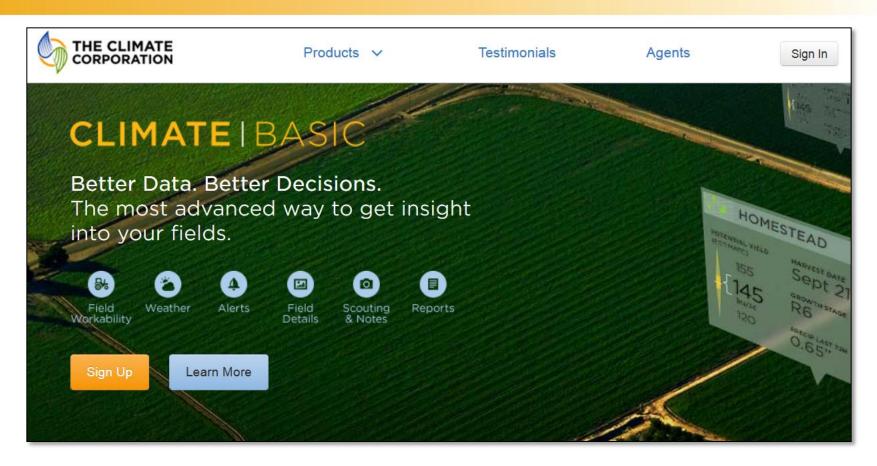
Smart manufacturing Crowd-driven Ecosystem for Evolutionary Design (CEED)



People, materials, models, simulation, equipment, all connected in one distributed global environment.

Cloud provides a global, distributed, secure, and scalable environment for collaborative design and manufacturing

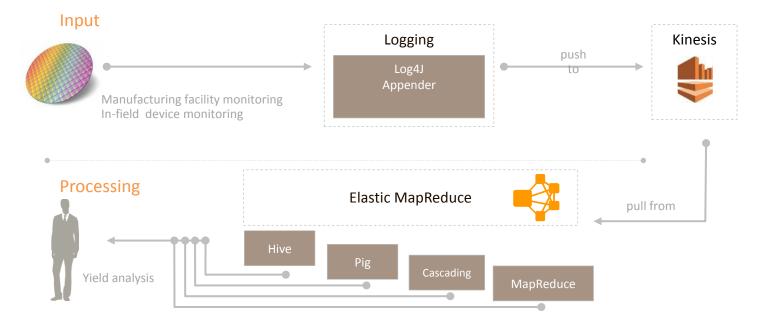

AWS Has Always Been About Big Data


WEB LOG ANALYSIS Amazon Web Services provides services and infrastructure to build reliable, fault-tolerant, and highly available web applications in the cloud. In production environments, these applications can generate huge amounts of log information.

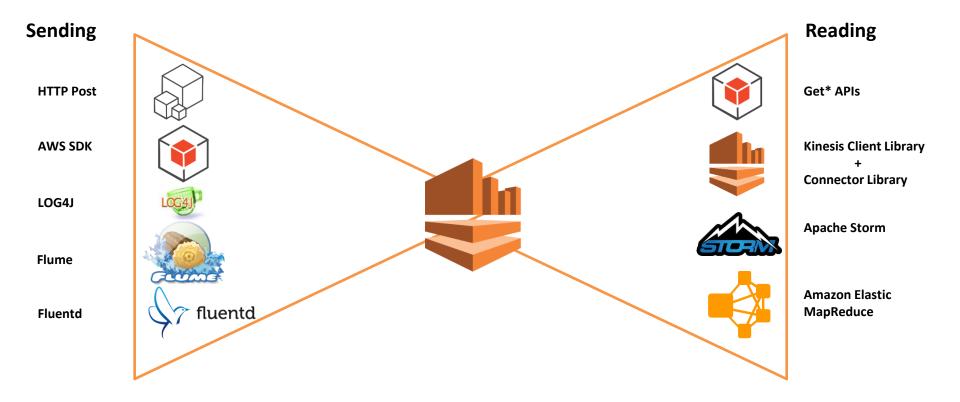
This data can be an important source of knowledge for any company that is operating web applications. Analyzing logs can reveal information such as traffic patterns, user behavior, marketing profiles, etc. However, as the web application grows and the number of visitors increases, storing and analyzing web logs becomes increasingly challenging.

This diagram shows how to use Amazon Web Services to build a scalable and reliable large-scale log analytics platform. The core component of this architecture is Amazon Elastic MapReduce, a web service that enables analysts to process large amounts of data easily and cost-effectively using a Hadoop hosted framework.

Big Data is Everywhere!



Big Data in Manufacturing



Managing big data for competitive advantage

- For design, engineering, production environments
- Quality and Yield Analysis, Statistical Process Control
- Structured and unstructured queries

Sending & Reading Data from Kinesis Streams

amazor

Summary

Cloud for Scalability

Cloud for Global Collaboration

Cloud for Big Data

