Coordination programming for self-
tuning: the challenge of a
heterogeneous open environment

Alex Shafarenko
Compiler Technology and Computer
Architecture Group

University of Hertfordshire

A coordination language

Concept of coordination

— orchestration of de-contextualised components

* no knowledge of the overall system, or any other
component

e algorithm dependent solely on self-contained inputs (seen
as messages), no external refs!

e output is also self-contained, “messages” without a
destination
— a coordination program that:
e coordinates progress: “the what” & “the when”

e coordinates interfaces: so that components understand
each other (including polymorphism, inheritance, etc.)

e coordinates access to shared objects.

AstraKahn: coordination by streaming

Some previous exposure: Functional-Reactive, FBP, Linda, etc.

AstraKahn is a successor (or an off-shoot) of
S-Net (see snet-home.org)

S-Net fully implemented, well researched.
Industrial evaluation:

— THALES, SAP, Philips.

2 EU Framework projects

— AETHER, ADVANCE; influenced PARAPHRASE

S-Net has a similar concept of connectivity, but no
fixed implementation model.

Means of Compositionality

Kahn’s Streaming

— components do not interact by sharing data

— FIFO communication with a (generally) static topology
— each message a unit of work

— messages can be used to trigger component actions

— no explicit memory model (i.e. all memory partitioned into
private memories of components)

e [John Leidel’s/Micron talk]

— nevertheless, “communication” is a metaphor:

e what gets passed around is “access” to data, which may or may
not require real communication

* hence a shared-memory and a mixed-memory interpretation are
possible

Components + streaming not knew

e Kahn in the ‘70s: Kahn Process Networks (KPN)

— components are deterministic sequential processes

— fixed-topology input and output FIFOs
e blocking reads, nonblocking writes = infinite resources
* no alternation, one read at a time

— theoretical proofs of soundness for semantics
e a nontrivial result, since possibly cyclic topology

e there exists a functional interpretation of KPN : a graph
— vertices are stream monotonic functions
— edges are stream variables
— a system of eqs, guaranteed to have a solution

Purpose of AstraKahn

e “Modernise” KPNs
— infinite FIFOs don’t exist (limited resources)

— (sequential) vertices have algebraic properties w.r.t input streams,
egro potential concurrency

— add useful nondeterminism for real-time/embedded systems, e.g.
DFRs, but as a general mechanism and under control
e Structure KPNs
— means of hierarchical definition of topology

— means of vertex refinement
* vertices themselves can be simple network patterns

— separate computation from synchronisation, make synchro-patterns
analysable

 Coordination agenda
— mentioned earlier

A three layer construction

e Topology and Progress Layer (TPL)

— connects components

— controls concurrency and communication

— provides a “programmable” synch facility
 Constraint Aggregation Layer

— does interface reconciliation

— matches the system configuration to the environment
e Data and Instrumentation Layer

— manages shared data

— provides transaction mechanisms

— gathers stream statistics

AstraKahn/TPL

Agenda:

e Classification of vertices
e Synchronisers

e Connectivity
e Concurrency + (self-)tuning

A single Kahn vertex

Prefix monotonicity
=> 3 prefix
Refinement:

synchroniser plus
box

Synch has a state,
joins messages into
one, is programmed
in AstraKahn

Box maps one msg
onto output streams,
has no state, is
programmedin a
box language

— since stateless,

need not >1 input
chan

Further refinement

Use an interface coordination
layer (CAL) to refine the
vertex down to a SISO, purely
functional core and a splitter
shell

Splitting based on type and
(crucially) subtyping

Take care of inheritance in
addition to encapsulation

encapsulation, inheritance +
subtyping = OOP, but now
requiring an ab initio
construction.

— hierarchies due to the

network decomposition, NOT
the nature of messages!

Data Analytics interpretation

e Components written in std languages [Cray,|IBM]

— red blobs is the “algorithm”, available globally.

* since stateless

_ a message carries a job ™\
—a channel is a trigger

— a splitter is a router

— red blobs gets instantiated near the blue data site

e data movement is minimised

A single channel

e A FIFO of limited size

e Concept of pressure
— pressure p = # of msg in channel

—pP=p,
e blocking write (ext. of KPN)
— hegative pressure

e p =# of msg the consumer promises to
consume immediately
— Remember: a channel is a trigger not a
communication medium between
stationary processes...

Multiple Input Multiple Output

e Many inputs merged

nondeterministically into a single
FIFO

— don’t want n/d then don’t use
multiple inputs!

e The output is copied to multiple
destinations

e Any consumer can cause critical
pressure

* Negative pressure = max over the
consumers’ pressures

Boxes: transductor (“map”)

Simplest box category

no more than 1 output
message per input message
per channel

box is not run if the output

pressure is critical on any of

its output chans; this

increases input pressure

— “back-propagation” of
pressure

single step semantics
Concurrency

Proliferation

Simplest box category

no more than 1 output
message per input message
per channel

box is not run if the output

pressure is critical on any of

its output chans; this

increases input pressure

— “back-propagation” of
pressure

single step semantics
Concurrency

Boxes: inductor

one input msg => a seq
of output msgs per chan
“brackets” demarcate

seqs, without taking
space in FIFOs

behaviour under
pressure

boxes do not see, nor
produce brackets

Boxes: reductor

 Dyadic reductor
based on most general Il

® : a->b->a
a®bl®Db2Db3..Dbn
e single-step semantics

side-messages
under pressure
(animation)

e Concurrency
classification:

e 2DO

e 2DU

Dydadic reductor protocol

[read iny==a]

nig

[read in,= b]

send o, to all
out,, k>1;

g terminate

/ send to out,:
if n>1 then a,o,, 4

Y if n=1 then a
if n=0 then a,0,
terminate
.
L Launch Launch
reductur controller
___________ 1 1F'

compute :
apb=a I

(send on out,, k=1)

_— re@‘uesf‘“m

. ——_granted? _—

yield

|

|

|

N |
|

|

a=-a’ |
|

terminate

-

| requesm %'
|

read in,==b]
= N

[grant request J

deny request;
push a’ back to
ins;
terminate

l//"'

deny request;
send to out,:

if n=1 then a’,o,_,

if n=1 then a’

if n=0 then a’,o;;

terminate

Monadic reductor

® same as dyadIC result
except the operator
is a->a->a

* riCher CIaSSiﬁcation side-messges

—2MO
— 2MS
—2MU

Monadic reductor: proliferation

¢ sadame as result
dyadic
except the
operator is
a->a->a

e richer
classification result
MO "
— 2MS
— 2MU

Morphisms

e Proliferation happens under high supply and
demand

— Positive pressure on the input: many messages
available

— Negative pressure on the output: many result
messages can be accepted immediately.

e What if there is only one record?
— The box may allow data parallelism
— Input message split into many, results combined

e A morphism is an automatic replacement of a
transductor by a simple net.

Morphism

redUCtOFW

.IndUC._LOFW

Override

tranSdUCtOFW

— €T 35 O+ O v |

redUC._LOFWM

+“ - © C WO 35 U+ O « |

— €T 35 O+ O +

Synchronisers

e Purpose: to accumulate sufficient prefix from all
input channels; to form an output msg(s) and
send it/them to appropriate output channels

 Asynch is a combination of an FSM and a path
functional implemented as call-up storage.
— not a stack-machine, Turing machine, etc.
— call-up storage is not analysed in transitions

— only purpose of call-up storage is to form output
msgs

Synch Example: zipper

synch zip2(a:0,b:0 | c¢:0)

{

store ma:a, mb:b;

start: on a do
ma:= this
goto sl;
on b do
mb:= this
goto s2;
sl: on b send (ma,this) => ¢ goto start;
s2: on a send (mb,this) => ¢ goto start;

Synchronisers can deal with brackets

synch listMerge (a:d, b:d | c:d+1)

{

start:
on a.@k & k=d send this => c goto alt;
on a.else send this => ¢ goto start;

alt:
on b.@k & k=d send @k+1 => c goto start;
on b.else send this => ¢ goto alt;

Synchs are sources of pressure

can block input channel

by analysing the transition diagram can apply
negative pressure to input channels
— when msgs on those are required for progress

— by observing the queue on other inputs
dependent on that one

synchs are basis for machine learning and
observation-led adaptation

Wiring: box labelling

Boxes are declared based on their category and
the number of output channels, e.g. 2DU, 3T, etc.

Input and output channels are numbered, not
named

wiring is, by contrast, based on names
remember: synchs already use named channels

AK naming construct (naming parentheses) for
boxes:

— e.g. instantiate a 3DU box R:
<a,b|R|¢c,de>

serial composition

serial composition

parallel composition

parallel composition

Feed-back

* Consider a net
with a pair of .
channels N
hamed
identically

Feed-back

the feed-back
channel

— depressurised

— critical pressure =
infinity, but out-of-
memory situation is
possible

— pressure transfer
mechanism, e.g.
transfer pressure
fromqgtob

— can be negative as
well

wwwwmm@mwwmwmwmwmwww@%m
Pl

u-___e-a"”

™,
-,
o,

Wiring is generic: can wire any
topology, incl. cyclic, using .., ||, \

0] 0 0] 1 1 d d d
(@M 1) e @ 0] o)) oo oe @AM 1)) \

Asterisk (hence AstraKahn)

Feedback depressurises the
cannel

Suppresses progress control by
self-regulation
Instead of feedback:

— unroll the cycle

— introduce feed-forward

— output based on a fixed point

The fixed point

— defined as a path via
synchronisers

— where the message is
guaranteed
* not to change
* not to cause a change of state
Reverse fixed point to reclaim the
head of the chain

Pressure unfolds the chain

> out

Conclusions

Full map-reduce style concurrency

Coordination without tuning due to the
pressure mechanism

Flexible synchronisation, incl. useful
nondeterminism

Separation of concerns through coordination

Future

 implementation as a library
— All elements of the TPL implemented as API

— synchro-language implemented as a (micro-)
compiler

e “proper” implementation
— CAL worked on by a PhD student

— box-language interface with C will be attempted
first

