
Exascale Programming Challenges: Adjusting
to the “New Normal” for Computer Architecture

John Shalf
Department Head: Computer Science and Data Sciences (CSDS)
CTO: National Energy Research Scientific Computing Center (NERSC)

HPC 2014HPC 2014
July 8, Cetraro, ItalyJuly 8, Cetraro, Italy

CISE CSE 2013 Article

Original Title:
How I learned to Stop Worrying and Love Exascale

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 3

Technology Challenges for the Next DecadeTechnology Challenges for the Next Decade

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 4

! "

! #"

! ##"

! ###"

! ####"

$%
"&'

(%
"

) *
+,‐

.*
/"

! 0
0 "

12
345

,6"
70

0 "
12

345
,6"

(8
345

,69
$)

: ;
"

<14
=<"

,2.
*/

41
22

*4
."

>/
1‐

‐"‐
?‐

.*
0 "

21@"

A#! B"

Internode/MPI�
Communica on�

On‐chip��/�CMP�
communica on�

Intranode/SMP�
Communica on�

Pi
co
jo
ul
es
�P
er
�O
pe

ra
on

�

Parallelism is
growing at

exponential rate

Power is leading
constraint for future
performance growth

By 2018, cost of a FLOP will be
less than cost of moving 5mm

across the chip’s surface (locality
will really matter)

Reliability going down for
large-scale systems, but
also to get more energy

efficiency for small systems

Memory Technology
improvements are

slowing down

Whats wrong with current HPC Systes?Whats wrong with current HPC Systes?
Designed for Constraints from 30 years ago! (wrong target!!)

Old Constraints

• Peak clock frequency as primary
limiter for performance improvement

• Concurrency: Modest growth of
parallelism by adding nodes

• Cost: FLOPs are biggest cost for
system: optimize for compute

• Memory scaling: maintain byte per
flop capacity and bandwidth

• Locality: MPI+X model (uniform
costs within node & between nodes)

• Uniformity: Assume uniform
system performance

• Reliability: It’s the hardware’s
problem

New Constraints

• Power is primary design constraint for
future HPC system design

• Concurrency: Exponential growth of
parallelism within chips

• Cost: Data movement dominates:
optimize to minimize data movement

• Memory Scaling: Compute growing
2x faster than capacity or bandwidth

• Locality: must reason about data
locality and possibly topology

• Heterogeneity: Architectural and
performance non-uniformity increase

• Reliability: Cannot count on
hardware protection alone

51/23/2013

Fundamentally breaks our current programming paradigm and computing ecosystem

! "

! #"

! ##"

! ###"

! ####"

$%
"&'

(%
"

) *
+,‐

.*
/"

! 0
0

"12
345

,6"
70

0
"12

345
,6"

(8
345

,69
$)

: ;
"

<14
=<"

,2.
*/

41
22

*4
."

>/
1‐

‐"‐
?‐

.*
0 "

21@"

A#! B"

Internode/MPI�
Communica on�

On‐chip��/�CMP�
communica on�

Intranode/SMP�
Communica on�

Pi
co
jo
ul
es
�P
er
�O
pe

ra
on

�

Programming Models and Abstractions are a Reflection of
the Underlying Machine Architecture
• Express what is important for performance
• Hide complexity that is not consequential to performance

Current Programming Abstractions are Increasingly
Mismatched with Underlying Hardware Architecture
• Changes in computer architecture trends/costs
• Performance and programmability consequences

Technology changes have deep and pervasive effect on
ALL of our software systems (and how we program them)
• Change in costs for underlying system affect what we expose
• What to virtualize
• What to make more expressive/visible
• What to ignore

The Programming Systems ChallengeThe Programming Systems Challenge

Parameterized Machine ModelParameterized Machine Model
(what do we need to reason about when designing a new code?)

Cores
•How Many
•Heterogeneous
•SIMD Width

Network on Chip (NoC)
•Are they equidistant or
•Constrained Topology (2D)

On-Chip Memory Hierarchy
•Automatic or Scratchpad?
•Memory coherency method?

Node Topology
•NUMA or Flat?
•Topology may be important
•Or perhaps just distance

Memory
•Nonvolatile / multi-tiered?
•Intelligence in memory (or not)

Fault Model for Node
• FIT rates, Kinds of faults
• Granularity of faults/recovery

Interconnect
•Bandwidth/Latency/Overhead
•Topology

Primitives for data
movement/sync

•Global Address Space or
messaging?
•Synchronization
primitives/Fences

For each parameterized machine attribute, can
• Ignore it: If ignoring it has no serious power/performance consequences
• Expose it (unvirtualize): If there is not a clear automated way of make decisions
• Must involve the human/programmer in the process (make pmodel more expressive)
• Directives to control data movement or layout (for example)

•Abstract it (virtualize): If it is well enough understood to support an automated mechanism to
optimize layout or schedule
• This makes programmers life easier (one less thing to worry about)

Want model to be as simple as possible, but not neglect any aspects of
the machine that are important for performance

Abstract Machine Model Abstract Machine Model
(what do we need to reason about when designing a new code?)

The Programming Model is a Reflection of
the Underlying Abstract Machine Model

Equal cost SMP/PRAM model
• No notion of non-local access
• int [nx][ny][nz];

Cluster: Distributed memory model
• CSP: Communicating Sequential Processes
• No unified memory
• int [localNX][localNY][localNZ];

2-level Locality Model (core, node)
• Candidate Type Architecture (CTA)
• MPI+X model (for all practical purposes)

SMP

P P P P P

P P P P P

MPI Distributed Memory

Martha Kim, Columbia U. Tech Report “Abstract Machine Models and Scaling Theory”
http://www.cs.columbia.edu/~martha/courses/4130/au13/pdfs/scaling-theory.pdf

SMP

P P P

SMP

P P P

SMP

P P P

SMP

P P P

2-Level MPI+X is dominant, but insufficient!Whats Next?

SIAM PP08

What does an exascale
node look like?
… at least as far as we know from current
processor/system roadmaps

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 10

Physics brings the world
together because we are all
subjected to the same laws
Richard P. Feynman

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 111/23/2013

1/23/2013 12

Hybrid Architectures:Hybrid Architectures:
Moving from side-show to necessity

Hybrid or manycore
is the only approach

that crosses the
exascale finish line

Manycore was recommendation of “View
from Berkeley”

< add quote. Why would you exacerbate
parallelism as a problem?>

Current Architectural FamiliesCurrent Architectural Families

131/23/2013

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M

em
or

y

...
Acc.

...

M
em

or
y

M
em

or
y

Acc.

Heterogeneous
Manycore

Homogeneous
Manycore

Heterogeneous
Accelerator

Attached
Accelerator

Current Architectural FamiliesCurrent Architectural Families

141/23/2013

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Core Core

Network-on-Chip

...

...

...
M

em
or

y

...
Acc.

...

M
em

or
y

M
em

or
y

Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Architectural ConvergenceArchitectural Convergence

151/23/2013

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Core Core

Core Core

Network-on-Chip

...

...

...
M

em
or

y

...
Acc.

...

M
em

or
y

M
em

or
y

Acc.

1/23/2013

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Accelerators vs. Thin Cores
Primary Differentiation
•ISA
•Security/Protection
•SIMD Width
•Thread Divergence
•Cache Coherence

Accelerators vs. Thin CoresAccelerators vs. Thin Cores
Primary DifferentiationPrimary Differentiation
••ISAISA
••Security/ProtectionSecurity/Protection
••SIMD Width SIMD Width
••Thread DivergenceThread Divergence
••Cache CoherenceCache Coherence

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

Reducing Space of ChoicesReducing Space of Choices

161/23/2013

Core Core

Core Core

Network-on-Chip

...

...
...

M
em

or
y

1/23/2013

IBM/NVIDIA
AMD APU
MontBlanc

Intel Xeon Phi
BlueGene/Q

Heterogeneous
Manycore

Homogeneous
Manycore

• Cost to move a bit on copper wire:
• Power = Bitrate * Length / cross-section area

• Wire data capacity constant as feature size shrinks
• Cost to move bit proportional to distance
• ~1TByte/sec max feasible off-chip BW (10GHz/pin)
• Photonics reduces distance-dependence of bandwidth

The Problem with Wires:
Energy to move data proportional to distance

Copper requires to signal amplification
even for on-chip connections

Photonics requires no redrive
and passive switch little power

1"

10"

100"

1000"

10000"

DP
"FL

OP
"

Re
gis

te
r"

1m
m"

on
3ch

ip"

5m
m"

on
3ch

ip"
15

mm
"on

3ch
ip"

Of
f3c

hip
/D

RA
M

"
loc

al"
int

er
co

nn
ec

t"

Cr
os

s"s
ys

te
m"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs will cost less
than on-chip data

movement! (NUMA)

FLO
Ps

FLO
Ps

Data M
ovem

ent

Data M
ovem

ent

Data Locality Management within a Node

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

19

Sun Microsystems Coherence
Domains

Can Get Capacity Can Get Capacity OROR BandwidthBandwidth
But Cannot Get Both in the Same TechnologyBut Cannot Get Both in the Same Technology

201/23/2013

H
ig

h
B
an

dw
id

th
 M

em
or

y

St
an

da
rd

 D
R

A
M

N
on

-V
ol

at
ile

 M
em

or
y

Old Paradigm for off-chip memory
•One kind of memory (JEDEC/DDRx)
•~1 byte per flop memory capacity
•~1 byte per flop bandwidth (0.25 typical)
New Paradigm
•DDR4: ~1 byte per flop capacity w

< 0.01 bytes/flop BW
•Stacked Memory: ~1 byte per flop capacity

< 0.01 bytes/flop capacity
•Non-Volatile Memory

Consumes more energy on write than read

Bandwidth\Capacity� 16�GB� 32�GB� 64�GB� 128�GB� 256�GB� 512�GB� 1�TB�
4�TB/s� �� �� �� �� �� ��
2�TB/s� Stack/PNM� �� �� �� �� �� ��
1�TB/s� �� Interposer�� �� �� ��

512�GB/s� �� �� �� HMC�organic� �� ��
256�GB/s� �� �� �� �� �� ��
128�GB/s� �� �� �� �� �� DIMM�
64�GB/s� NVRAM�

Cost�Constrained�(cost/bit�increases�w/bandwidth�and�capacity)�
Po
w
er
�C
on
st
ra
in
t�

NVIDIA’s Gryphon Processor Concept
(Yes… this is the public version)

Shekhar Borkar: Intel

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

D
R

A
M

N
V

R
A

M
(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

23

Abstract Machine Model for Exascale

http://www.calhttp://www.cal--design.org/publicationsdesign.org/publications

24

• Lightweight cores not fast enough to process complex
protocol stacks at line rate
• Simplify MPI or add thread match/dispatch extensions
• Or use the memory address for endpoint matching

• Can no longer ignore locality (especially inside of node)
• Its not just memory system NUMA issues anymore
• On chip fabric is not infinitely fast (Topology as first class citizen)
• Relaxed relaxed consistency (or no guaranteed HW coherence)

• New Memory Classes & memory management
• NVRAM, Fast/low-capacity, Slow/high-capacity
• How to annotate & manage data for different classes of memory

• Asynchrony/Heterogeneity
• New potential sources of performance heterogeneity
• Is BSP up to the task?

Programming Model Challenges
(why is MPI+X not sufficient?)

25

2009 Exascale Roadmapping Workshop code teams (want 10x)
“Willing to change everying, but want to minimize the number of lines of code I
need to change to get good performance when I move to a new machine”

Minimizing code changes to get performance is defined as “performance
portability”
•Naturally high performance code if you program to the right abstractions
•“good performance by construction”

Is it a revolution… or is it really a revolution? (discussions with Paul)
•Vector to MPI we still preserved 90% of our F77 code
•Was that a revolution or expensive evolutionary transition?

First: what is the abstract model to represent the machine
Second: what are the correct programming abstractions productively map
programs to that abstract model of the machine

1/23/2013 26

What do the programmers/code-teams want?

Response To Data Locality
Challenge

Data Locality Management

Vertical Locality Management
(spatio-temporal optimization)

Horizontal Locality Management
(topology optimization)

28

Sun Microsystems

0

2

4

6

8

10

12

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 2 3 6 12

768 384 256 128 64

M
em

or
y

/ G
B

 p
er

 n
od

e

Ti
m

e
/ s

OpenMP threads / MPI tasks

"DGEMM" FFT

G
O
O
D

Requires user
training to

mitigate NUMA
performance

issues.

Current Practices (2-level Parallelism)
NUMA Effects Ignored (with huge consequence)

MPI+OMP Hybrid
• Reduces memory footprint
• Increases performance up to NUMA-node limit
• Then programmer responsible for matching up computation with data

layout!! (UGH!)
• Makes library writing difficult and Makes AMR nearly impossible!

It’s the Revenge
of the SGI
Origin2000

Bad News!

We punted on the
solution then, and
we haven’t solved

it NOW!!

Expressing Hierarchical LayoutExpressing Hierarchical Layout
Old Model (OpenMP)
• Describe how to parallelize loop iterations
• Parallel “DO” divides loop iterations evenly among

processors
• . . . but where is the data located?

New Model (Data-Centric)
• Describe how data is laid out in memory
• Loop statements operate on data where it is located
• Similar to MapReduce, but need more sophisticated

descriptions of data layout for scientific codes

forall_local_data(i=0;i<NX;i++;A)
C[j]+=A[j]*B[i][j]);

30

Data-Centric Programming Model
(current compute-centric models are mismatched with emerging hardware)

Building up a hierarchical layout
• Layout block coreblk {blockx,blocky};
• Layout block nodeblk {nnx,nny,nnz};
• Layout hierarchy myheirarchy {coreblk,nodeblk};
• Shared myhierarchy double a[nx][ny][nz];

31

• Then use data-localized parallel loop
• Foreach(TileCollection, Tile(a))

do(i=0;i<nx;i++;a){
do(j=0;j<ny;j++;a){

do(k=0;k<nz;k++;a){
a[i][j][k]=C*a[i+1]…>

• And if layout changes, this loop remains the
same

Satisfies the request of the application developers
(minimize the amount of code that changes)

Change as Few Lines of Code as
Possible for Each Machine

Model or Generation

Tiling Formulation: Tiling Formulation: abstracts data locality, topology, cache
coherence, and parallelism

Expose massive degrees of parallelism through domain
decomposition
• Represent an atomic unit of work
• Task scheduler works on tiles
Core concept for data locality
• Vertical data movement

– Hierarchical partitioning
• Horizontal data movement

– Co-locate tiles sharing the same data by respecting tile topology
Multi-level parallelism
• Coarse-grained parallelism: Asynchrony across tiles and across nodes
• Fine-grain parallelism: Vectorization, instruction ordering within tile
Centralize and parameterize tiling information at the data structures
• Direct approach for memory affinity management for data locality
• Expose massive degrees of parallelism through domain decomposition
• Overcomes challenges of relaxed coherency & coherence domains!!!

Box 2

Box 1

Box 2

Box 3

Box 4

Box 5

Tile (1,1) Tile (1,2)

Tile (2,1) Tile (2,2)

Tile (3,1) Tile (3,2)

Tiled Box 2

Support different layouts for various cache coherence scenarios
Require minimum code modification when the memory layout is changed
Memory layout options
• Specified at the array construction thru a flag or
• export DATA_LAYOUT={LOG | SEP | REG}
The solvers remain unchanged !!!

Abstraction for Memory Layout

33

a) Logical Tiles b) Separated Tiles c) Regional Tiles

cell tile

Separated tiles with halos

Didem Unat
Dan Quinlan

Lambdas for Loop Traversal
Decouple Loop Traversal from Loop Body

34

doeach tl in tiledA

! Apply the following

end doeach

Why?
• Hides complicated loop traversal ordering behind the iterator interface
• Can change how the loop is parallelized
• Can add GPU acceleration under the hood
• Programmer does not need to implement them all

Introduce a language construct (such as doeach) to make it clean
Based off of CHAPEL iteration spaces but can use C++11 lambdas

TiDA: Iterating over Tiles
Didem Unat (SC2013)

35

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

Original loop nestOriginal loop nest

Iterating over Tiles: Compiler Support

37

call TidaAlloc(tiledA,size,layout)
do tileno=1, ntiles (tiledA)

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

end do

Looks the same on GPUs and on
manycore CPUs (OMP and
OpenACC under the covers)

Tile traversal can be
hidden behind an
iterator or a loop

construct

Iterating over Tiles: Compiler Support

38

call TidaAlloc(tiledA,size,layout)
do tileno=1, ntiles (tiledA)

tl = get_mtile(tiledA, tileno)
lo = lwb(tl)
hi = upb(tl)
A => dataptr(tiledA, tileno)
B => dataptr(tiledB, tileno)

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

end do

With a compiler support,
metadata retrieval can

be hidden from the
programmer

Tile traversal can be
hidden behind an
iterator or a loop

construct

Kokkos: A C++ Templated Implementation
(Sandia): same ideas, different package

Developed at Sandia
• Main target is molecular dynamics simulations & sparse linear algebra
• Array of Struct and Struct of Array support for CPU/GPUs

– Layout changes are invisible to the user code

Uses C++ template meta-programming and operator overloading
Multidimensional Array
• Layout, Allocation, and Access parameters

View <double **, Layout, Device, RandomRead> a[“a”, N, M];
• Accesses:

a(i,j)
• Layout: row-major or column-major, can be extended for tiling

parallel_for
which takes a functor and iteration space as arguments

Organized a workshop at
Lugano, Switzerland in April
• To discuss emerging approaches
• Document common abstractions

that appear in multiple
implementations

• Opportunity to formalize this
abstraction (reference standard)

PADAL report will be available in
late August
•Co-released technical report with
DOE, CSCS/ETH, INRIA, NSF, and
others . . .
http://www.padalworkshop.org/

Programming Abstractions for Data Locality
Lugano Workshop, April 2014

Heterogeneity /
Inhomogeneity
looking beyond BSP execution models

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU
computing)

• Fine grained power mgmt. makes homogeneous
cores look heterogeneous
– thermal throttling – no longer guarantee

deterministic clock rate
• Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
– Near Threshold Voltage (NTV)

• Fault resilience introduces inhomogeneity in
execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-

based resilience

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 42

Bulk Synchronous Execution

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

• Heterogeneous compute engines (hybrid/GPU
computing)

• Fine grained power mgmt. makes homogeneous
cores look heterogeneous
– thermal throttling – no longer guarantee

deterministic clock rate
• Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
– Near Threshold Voltage (NTV)

• Fault resilience introduces inhomogeneity in
execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-

based resilience

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 43

Bulk Synchronous Execution

Near Threshold Voltage (NTV): Shekhar Borkar (Intel)
The really big opportunities for energy efficiency require codesign!

• Heterogeneous compute engines (hybrid/GPU
computing)

• Fine grained power mgmt. makes homogeneous
cores look heterogeneous
– thermal throttling – no longer guarantee

deterministic clock rate
• Nonuniformities in process technology creates

non-uniform operating characteristics for cores on
a CMP
– Near Threshold Voltage (NTV)

• Fault resilience introduces inhomogeneity in
execution rates
– error correction is not instantaneous
– And this will get WAY worse if we move towards software-

based resilience

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 44

Bulk Synchronous Execution

f

f

f f

f/2

f/2

f/2

f/2

f/4

f/4

f/4 f/4

f

f

f f

f

f

f

f

f

f

f f

Fig: Shekhar BorkarFig: Shekhar Borkar

Conventional NTV

Near Threshold Voltage (NTV): Shekhar Borkar (Intel)
The really big opportunities for energy efficiency require codesign!

Improving energy efficiency or performance of
individual components doesn’t really need co-design

– Memory is faster, then odds are that the software
will run faster

– if its better, that’s good!
The really *big* opportunities to improve energy
efficiency may require a shift in how we program
systems

– This requires codesign to evalute the hardware and
new software together

– HW/SW Interaction unknown (requires HW/SW
codesign)

If software CANNOT exploit these radical hardware
concepts (such as NTV), then it would be better to
not have done anything at all!

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 45

Bulk Synchronous Execution

f

f

f f

f/2

f/2

f/2

f/2

f/4

f/4

f/4 f/4

f

f

f f

f

f

f

f

f

f

f f

Fig: Shekhar BorkarFig: Shekhar Borkar

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy

Bulk Synchronous Execution Model Asynchronous Execution Model

Nouveu Dataflow
Swarm, HPX, OCR,
Etc…

Its one of the only “safe” ways to program for
this kind of execution model (most other options
lead to insanity)

Requirements: express computation declaratively
• Stateless
• No side-effects
• Only operate on data you were handed

Benefits of “Isolation”
• Data dependence becomes statically analyzable
• Exposes implicit parallelism (DAG as constraint and runtime has a lot of

freedom to control schedule)
• Trivial data migration or task migration (containment)

– Local stores, accelerators and other disjoint memories are not a problem
• Know where data is needed OR when it is needed (but getting both is hard)

Resurgent Interest in Functional Semantics
(languages, coordination languages, or runtimes)

Functional Partitioning to Reduce Pressure Functional Partitioning to Reduce Pressure
on Domain Decompositionon Domain Decomposition

P2P2
32 cores32 cores

P1
32

cores

P1P1
32 32

corescores

P3
32

cores

P3P3
32 32

corescores

Program LexicalLexical OrderOrder

P2P2
16 cores16 cores

P1
16

cores

P1P1
16 16

corescores

P3
16

cores

P3P3
16 16

corescores

Optional Dataflow ScheduleOptional Dataflow Schedule

Time

Schedule independent
physics To Execute
Concurrently

This is hard to do without
functional semantics

Examples using TBB
(functionally complete,
but overheads high)

Hand-roll implementation
Libraries to formalize

Examples using TBB
(functionally complete,
but overheads high)

Hand-roll implementation
Libraries to formalize

Sources of performance heterogeneity increasing
• Heterogeneous architectures (accelerator)
• Thermal throttling
• Performance heterogeneity due to transient error recovery

Current Bulk Synchronous Model not up to task
• Current focus is on removing sources of performance variation

(jitter), is increasingly impractical
• Huge costs in power/complexity/performance to extend the life

of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of asynchronous computational
models (e.g. SWARM, HPX, and other concepts from 1980s)

Conclusions on Heterogeneity

Emerging hardware constraints are increasingly mismatched with
our current programming paradigm
• Current emphasis is on preserving FLOPs
• The real costs now are not FLOPs… it is data movement
• Requires shift to a data-locality centric programming paradigm and hardware features

to support it

Technology Changes Fundamentally Disrupt our Programming
Environments
• The programming environment and associated “abstract machine model” is a

reflection of the underlying machine architecture
• Therefore, design decisions can have deep effect your entire programming

paradigm
• The BIGGEST opportunities in energy efficiency and performance

improvements require HW and SW considered together (codesign)

Performance Portability Should be Top-Tier Metric for codesign
• Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE

ConclusionsConclusions

The End
For more information go to

http://www.cal-design.org/
http://www.nersc.gov/
http://crd.lbl.gov/

Other Hardware Trends

1/23/2013Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 52

Old Hardware Drivers for Clouds
• COTS: Lowest cost off-the-shelf Ethernet gear (HPC pushed towards high-

performance fabrics for best TCO.)
• External vs. Internal: TCP/IP primarily to external network loads for web services

(HPC primarily internally focused traffic patterns)
• Throughput vs. Overhead: Throughput valued more than low latency + overheads

(HPC needed lower latency)
• Overheads: Stacked VMs for elasticity and dynamic loads (but hurt HPC due to

performance heterogeneity and overheads)
• Contention: Provision nodes for loosely coupled random traffic (tightly coupled

jobs: provision contiguous topologies)

New Developments in Drivers for Cloud/Datacenter
• Bikash Koley, Google Inc. (OI2012): 80%+ of Google traffic now internal facing

(used to be the other way around)
• Dennis Abts, Google Inc. (2011 book): High Performance Datacenter Networks:

Architectures, Algorithms, and Opportunities
• Nathan Farrington, Facebook (OI2013): Every 1kb of external traffic entering the

datacenter generates 930kb of internal traffic.

Cloud/Datacenter NEEDS high performance internal fabric
(requirements are starting to align with HPC)

53

Facebook seeing huge internal traffic requirements
(Nathan Farrington, Facebook Inc., Presented at
OIC2013)

54

Egress t raffic from one rack

Majority of Facebook Traffic is Intra-Cluster
(Nathan Farrington, Facebook Inc., Presented at
OIC2013)

55 ISC2013

Intracluster
Data Traffic

Google “Pluto Switch”
(fell off truck somewhere in Iowa)

56

OMG: Google is building
its own semi-custom

switches!

Custom Intra-Center Fabrics (Google not waiting !!)
• Who the heck cares what you use for transport within the center?
• Meaner/Leaner communications software stack
• Modify switches to use more effective congestion control or avoidance

– TCP/IP just uses inefficient lagging indicators of congestion or waits for packet
drop + AIMD avoidance

• Optical Circuit Switches: why use packet switching for persistent flows? (e.g.
OpenFlow, but make it a hard circuit for QoS guarantees)

System on Chip (SOC): Move NIC into CPU chip (silicon motherboard)
• Use Moore’s law to put more peripherals onto chip instead of more cores
• Reduces component count (reduces cost, size and complexity of

motherboards)
• Reduces power (fewer off-chip connections)
• Reduces sources of failure (fewer solder joints and connectors… ask ORNL

about that)
• Increases performance (factor of 20x reduction in software overheads)

Responses to New Cloud/Datacenter
Requirements

57

Old/New Conception of Cloud/Datacenters
(Simplified Conceptual Model)

58

The
Datacenter/Cloud

Old ConceptionOld Conception
Designed for externally facing TCP/IPDesigned for externally facing TCP/IP

Nearly 100% Std. TCP/IP ethernet inside and outNearly 100% Std. TCP/IP ethernet inside and out

DMZ
Router
90+%
traffic

DMZ
Router
90+%
traffic

BackboneBackbone

Old/New Conception of Cloud/Datacenters
(Simplified Conceptual Model)

59

The Datacenter/Cloud

New ConceptionNew Conception
Need to Handle Internal Data Mining/ProcessingNeed to Handle Internal Data Mining/Processing

Design for 80+% internal trafficDesign for 80+% internal traffic

DMZ
Router
10%
traffic

DMZ
Router
10%
traffic

BackboneBackboneCloud/Datacente
r

80+% of traffic
High-Performance Fluid

Center
Low Overhead, High Bandwidth,

Semi-custom internal
interconnect

HighHigh--Performance Fluid Performance Fluid
CenterCenter

Low Overhead, High Bandwidth,
Semi-custom internal

interconnect

Crunchy TCP/IP ExteriorCrunchy TCP/IP ExteriorCrunchy TCP/IP Exterior

Looks Like Conceptual Diagram
of a Typical HPC System

60

The Datacenter/Cloud

New ConceptionNew Conception
Need to Handle Internal Data Mining/ProcessingNeed to Handle Internal Data Mining/Processing

Design for 80+% internal trafficDesign for 80+% internal traffic

DMZ
Router
10%
traffic

DMZ
Router
10%
traffic

BackboneBackboneCloud/Datacente
r

80+% of traffic
High-Performance Fluid

Center
Low Overhead, High Bandwidth,

Semi-custom internal
interconnect

HighHigh--Performance Fluid Performance Fluid
CenterCenter

Low Overhead, High Bandwidth,
Semi-custom internal

interconnect

Crunchy TCP/IP ExteriorCrunchy TCP/IP ExteriorCrunchy TCP/IP Exterior

• COTS: Lowest cost off-the-shelf Ethernet gear (HPC pushed
towards high-performance fabrics for best TCO.)

• External vs. Internal: TCP/IP primarily to external network loads
for web services (HPC primarily internally focused traffic patterns)

• Throughput vs. Overhead: Throughput valued more than low
latency + overheads (HPC needed lower latency)

• Contention: Provision nodes for loosely coupled random traffic
(tightly coupled jobs: provision contiguous topologies)

• Performance Variation: Dynamic behavior for elasticity and cost
(but hurt HPC due to performance heterogeneity and overheads)

• Resilience: Loosely coupled jobs, depend on software to tolerate
failure (HPC tightly coupled parallelism depends on HW to avoid
failures… software not very tolerant of faults)

Convergence with HPC Requirements?
(scorecard)

61

System on Chip
A NEW strategy for making use of Commodity
Technology

1/23/2013 Computational Research Division | Lawrence Berkeley National Laboratory | Department of Energy 62

1990s - R&D computing hardware dominated by
desktop/COTS

• Had to learn how to use COTS technology for HPC
• Thomas Sterling’s “Beowulf Cluster”

2010 - R&D investments moving rapidly to consumer
electronics/ embedded processing

• Must learn how to leverage embedded/consumer processor
technology for future HPC systems

• Think “Beowulf chip”

Technology Investment Trends
Image below From Tsugio Makimoto: ISC2006

64

Building an SoC from IP Logic Blocks
Its legos with a some extra integration and verification cost
(Bill Dally’s “shopping List”) (anonymized price quotes)

Processor Core (ARM, Tensilica, MIPS deriv)
With extra “options” like DP FPU, ECC

IP license cost $150k-$500k

NoC Fabric: (Arteris, Denali, other OMAP-4)
IP License cost: $200k-$350k

DDR3 1600 memory controller
(Denali / Cadence, SiCreations)
+ Phy and Programmable PLL

IP License: $250-$350k

PCIe Gen3 Root complex
IP License: $250k

Integrated FLASH Controller
IP License: $150k 10GigE or IB DDR 4x Channel

IP License: $150k-$250k

With Marty Deneroff

memctlmemctl

memctlmemctl
MemoryMemory

DRAMDRAM

MemoryMemory
DRAMDRAM P

C
Ie

P
C

Ie

FLA
S

H

ctl
FLA

S
H

ctl

IB
 or

G
igE

IB
 or

G
igE

IB
 or

G
igE

IB
 or

G
igE

The Chip is NOT the commodity!

The stuff you put on the chip is
the commodity

Press (is out of control)

65

OpenSoC: Abstract Fabric
System-on-Chip (SoC) could revolutionize energy efficient computing

AXI
OpenSoC

Fabric
CPU(s)

HMC

AXI

AXI

CPU(s)

AXI CPU(s)
A

XI

CPU(s)
AXI

CPU(s)

AXI

AXI

10G
bE

PCIe

8 July
2014

Lawrence Berkeley National Lab, Computer Architecture Lab 66

Seymour Cray 1977: “Don’t put
anything in to a supercomputer
that isn’t necessary.”

Mark Horowitz 2007: “Years of
research in low-power embedded
computing have shown only one
design technique to reduce
power: reduce waste.”

SoC Revolution enables us to
achieve goal of reducing waste

– Enable us to include ONLY
what we need for HPC.

– Tighter component
integration

– Fewer losses for inter-chip
wiring for peripherals

http://www.opensocfabric.org/

Emerging hardware constraints are increasingly mismatched with
our current programming paradigm
• Current emphasis is on preserving FLOPs
• The real costs now are not FLOPs… it is data movement
• Requires shift to a data-locality centric programming paradigm and hardware features

to support it

Technology Changes Fundamentally Disrupt our Programming
Environments
• The programming environment and associated “abstract machine model” is a

reflection of the underlying machine architecture
• Therefore, design decisions can have deep effect your entire programming

paradigm
• The BIGGEST opportunities in energy efficiency and performance

improvements require HW and SW considered together (codesign)

Performance Portability Should be Top-Tier Metric for codesign
• Know what to IGNORE, what to ABSTRACT, and what to make more EXPRESSIVE

ConclusionsConclusions

The End
For more information go to

http://www.cal-design.org/
http://www.nersc.gov/
http://crd.lbl.gov/

Data layout (currently, make it more expressive)
• Need to support hierarchical data layout that closer matches architecture
• Automated method to select optimal layout is elusive, but type-system can support minimally

invasive user selection of layout
Horizontal locality management (virtualize)
• Flexibly use message queues and global address space
• Give intelligent runtime tools to dynamically compute cost of data movement

Vertical data locality management (make more expressive)
• Need good abstraction for software managed memory
• Malleable memories (allow us to sit on fence while awaiting good abstraction)

Heterogeneity (virtualize)
• Its going to be there whether you want it or not
• Pushes us towards async model for computation (post-SPMD)

Parallelism (virtualize)
• Need abstraction to virtualize # processors (but must be cognizant of layout)
• For synchronous model (or sections of code) locality-aware iterators or loops enable implicit

binding of work to local data.
• For async codes, need to go to functional model to get implicit parallelism

– Helps with scheduling
– Does not solve data layout problem

Bonus:

• There is progress in Exascale with many projects now
focused and on their way, e.g. FastForward, Xstack, and Co-
Design Centers in the U.S.

• HPC has moved to low power processing, and the processor
growth curves in energy-efficiency could get us in the range
of exascale feasibility

• Memory and data movement are still more open challenges

• Programming model needs to address heterogeneous,
massive parallel environment, as well as data locality

• Exascale applications will be challenge just because their
sheer size and the memory limitations

Summary

Objective: Enable DOE scientists and engineers to use the most advanced
computational hardware and software for discovery science.

The Challenge of our Decade: Performance growth in fixed power budget
•The challenge is as dramatic as transition from vector to MPP
•This transition affects all computing for science from smallest to the largest scale
•Fundamentally breaks our software infrastructure (need to re-architect)

Approach: Components of CoDesign Process
•XStack: Translate emerging architectural trends into advanced software technology
(operating systems, communications libraries, programming systems)
•Fast Forward: $60M public/private partnerships to accelerate development of
computing technologies to deliver 100x more usable operations per watt in 10 yrs
•CoDesign Centers: Software Design Space Exploration, “proxy applications” and
application prototyping to facilitate codesign
•Hardware Design Space Exploration: CAL hardware design space and “proxy
hardware” using architectural simulation and modeling to facilitate codesign

1/23/2013 71

DOE Strategy for Exascale Computing
Designing the computing environment for the future

The Power and Clock Inflection Point in 2004

Source: Kogge and Shalf, IEEE CISE

Power Efficiency has gone up significantly
in 2012

Data from: TOP500 November 2012

Most Power Efficient Architectures

Computer Rmax/
Power

Appro GreenBlade, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 2,450
Cray XK7, Opteron 16C 2.1GHz, Gemini, NVIDIA Kepler 2,243
BlueGene/Q, Power BQC 16C 1.60 GHz, Custom 2,102
iDataPlex DX360M4, Xeon 8C 2.6GHz, Infiniband QDR, Intel Xeon Phi 1,935
RSC Tornado, Xeon 8C 2.9GHz, Infiniband FDR, Intel Xeon Phi 1,687
SGI Rackable, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 1,613
Chundoong Cluster, Xeon 8C 2GHz, Infiniband QDR, AMD Radeon HD 1,467
Bullx B505, Xeon 6C 2.53GHz, Infiniband QDR, NVIDIA 2090 1,266
Intel Cluster, Xeon 8C 2.6GHz, Infiniband FDR, Intel Xeon Phi 1,265
Xtreme-X , Xeon 8C 2.6GHz, Infiniband QDR, NVIDIA 2090 1,050

[Tflops/MW] = [Mflops/Watt]

Power Efficiency over Time

Accelerator and BG

multicore

Data from: TOP500 November 2012

Power Efficiency over Time

One time
technology
improvement, not
a change in trend
rate

Data from: TOP500 November 2012

It’s the End of the World as We Know It!

Source: Kogge and Shalf, IEEE CISE 2013

Summary Trends

AMMs vs. Proxy Machine ModelsAMMs vs. Proxy Machine Models

78

AMM is the topology and schematic for future machines

The Proxy Machine Model fills that in with speeds and feeds
(AMM says what is bad, Proxy says just how bad!)

Iterating over Tiles

79

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

Original loop nestOriginal loop nest

Iterating over Tiles (Lambda Functions)

80

do tileno=1, ntiles (tiledA)

tl = get_mtile(tiledA, tileno)
lo = lwb(tl)
hi = upb(tl)
A => dataptr(tiledA, tileno)
B => dataptr(tiledB, tileno)

Tiling loopTiling loop

Element LoopsElement Loops

Loop body remains
unchanged

Loop body remains
unchanged

Get data ptrsGet data ptrs

Get tile and
its range

Get tile and
its range

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

end do

Changes to tile size or layout are invisible to the loops

Iterating over Tiles: Compiler Support

81

do tileno=1, ntiles (tiledA)

tl = get_mtile(tiledA, tileno)
lo = lwb(tl)
hi = upb(tl)
A => dataptr(tiledA, tileno)
B => dataptr(tiledB, tileno)

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

end do

With a compiler support,
metadata retrieval can

be hidden from the
programmer

Tile traversal can be
hidden behind an
iterator or a loop

construct

Iterating over Tiles: Compiler Support

82

call TidaAlloc(tiledA,size,layout)
do tileno=1, ntiles (tiledA)

do j=lo(2), hi(2)
do i=lo(1), hi(1)

B(i,j)= A(i,j) ...

end do
end do

end do

Loop Traversal

83

doeach tl in tiledA

! Apply the following

end doeach

Decouple the loop traversal from the loop body, why?
• Can hide any complicated loop traversal ordering behind the iterator

interface
• Can change how the loop is parallelized
• Can add GPU acceleration under the hood
• Programmer does not need to implement them all
Introduce a language construct (such as doeach) to make it clean

Motivating Examples

PDE solvers on block structured grids
SMC Proxy App
• Developed at the Combustion co-design center
• Compressible Navier Stokes solver

– Uses the same discretization approach as the
petascale application code S3D

– Captures both the dynamical core and the chemical
kinetics components of S3D

– Uses eight-order finite difference approximation in
space and a low-storage Runge-Kutta algorithm in
time.

The exascale target for SMC is 50 or more chemical
species
• Results are for 9 species

+y

+x

+z

U(x,y,z,t)

(a) (b)

Source: John Bell (LBNL)

SMC Proxy App

TiDA achieves 32x and 22x speedups over single OMP thread on
Trestles and Hopper, respectively

ThTh

What are the NRE and MFR Costs?
sample “quote” from a design firm (probably a bit low, but gives you an
idea of rough cost model) (again: anonymized)

Parameter Value
Foundry TSMC

Process
Technology

40nm 1P10M (m1 7x2y) ,
RDL, Bump, VTCp, ESD

Die size
estimate 16mm x 16mm

IP See IP Summary Slide

Package
1156 FCBGA, 3:2:3-layer,
35x35 body size, 1 mm
ball pitch

Tester
Platform Agilent-93K-640-300MHz

Test Time
Wafer Sort: 10s

Final Test: 10s

Component Amount
Manufacturing NRE

Masks, 12 Prototype Char Wafers, 150 Prototypes,
Process Eng, Product Eng, Project Management

$1,512,970

Package NRE
Package Tooling and Package Engineering

$23,460

Test Development NRE
Test Engineering and Tester Rental Time

$82,800

IP NRE
IP Licensing Fees, Support and Maintenance

$918,000

Characterization NRE
Char units, Tester rental, Test Engineering,
Process Engineering, Char report

$52,000

Qualification NRE
Q&R Engineering, HTOL, TMCL, HTSL, UHAST,
ESD & LU

$225,000

Total NRE $2,814,230

IP Description
PCIe Gen 2 PHY $200k (could be IB)
PCIe Gen 2 End point controller $80K
DDR3 PHY $338K
DDR3 Controller $100K

First 2.5
Ku

Next 2.5
Ku

Next 5
Ku

Next 10
Ku

Additio
nal

$121.60 $119.76 $117.97 $87.78 $74.80

With Marty Deneroff

ThTh

What are the NRE and MFR Costs?
sample “quote” from a design firm (probably a bit low, but gives you an
idea of rough cost model) (again: anonymized)

Parameter Value
Foundry TSMC

Process
Technology

40nm 1P10M (m1 7x2y) ,
RDL, Bump, VTCp, ESD

Die size
estimate 16mm x 16mm

IP See IP Summary Slide

Package
1156 FCBGA, 3:2:3-layer,
35x35 body size, 1 mm
ball pitch

Tester
Platform Agilent-93K-640-300MHz

Test Time
Wafer Sort: 10s

Final Test: 10s

Component Amount
Manufacturing NRE

Masks, 12 Prototype Char Wafers, 150 Prototypes,
Process Eng, Product Eng, Project Management

$1,512,970

Package NRE
Package Tooling and Package Engineering

$23,460

Test Development NRE
Test Engineering and Tester Rental Time

$82,800

IP NRE
IP Licensing Fees, Support and Maintenance

$918,000

Characterization NRE
Char units, Tester rental, Test Engineering,
Process Engineering, Char report

$52,000

Qualification NRE
Q&R Engineering, HTOL, TMCL, HTSL, UHAST,
ESD & LU

$225,000

Total NRE $2,814,230

IP Description
PCIe Gen 2 PHY $200k (could be IB)
PCIe Gen 2 End point controller $80K
DDR3 PHY $338K
DDR3 Controller $100K

First 2.5
Ku

Next 2.5
Ku

Next 5
Ku

Next 10
Ku

Additio
nal

$121.60 $119.76 $117.97 $87.78 $74.80

Notice that the steady state MFR cost bottoms out after about 10k
units

A typical large-scale HPC system requires more than 10k units
(sockets)

Moreover, Spreading a $10M NRE over 100k units (small-run for limited
of large scale HPC systems) is about $100/unit.

Economically Practical Design Point

Notice that the steady state MFR cost bottoms out after about 10k
units

A typical large-scale HPC system requires more than 10k units
(sockets)

Moreover, Spreading a $10M NRE over 100k units (small-run for limited
of large scale HPC systems) is about $100/unit.

Economically Practical Design Point

Commoditization Strategies
(alternative approaches to amortize NRE)

Chip is the commodity (CPU and GPU w/1TF/chip in today’s tech)
• NRE: $1B to design each generation
• Mfr. Costs: $100/chip for 240mm and pennies for 7mm
• Most costs are in verification of full custom circuit design IP is mostly proprietary
• Design and Verification NRE is shared across products using that chip
• GPUs and CPUs specialized to different market (some waste)

ASICs using commodity IP (for a 0.5TF chip but more control of
design)
• NRE: $2M in IP, $5M in assembly and verification, $2M for Mask + fab
• Mfr. Costs: $200/chip for initial 10K, and $100/chip beyond 50k chips
• NRE spread across 200k chips for large system is $50/chip
• Still have SW costs (but same baseline as commodity chip)
• No extra baggage in design (only include what you need for broad HPC

application mix. Concentrate design + verification costs on small subset of design
that needs to change)

88

DOE Exascale Initiative Technical Roadmap

Potential System Architectures
(original version from 2009 workshop)

Systems 2009 2015 2018

System peak 2 Peta 100-200 Peta 1 Exa

Power 6 MW ~10 MW ~20 MW

System memory 0.3 PB 5 PB 10 PB

Node performance 125 GF 400 GF 1-10TF

Node memory BW 25 GB/s 200 GB/s >400 GB/s

Node concurrency 12 O(100) O(1000)

Interconnect BW 1.5 GB/s 25 GB/s 50 GB/s

System size (nodes) 18,700 250,000-500,000 O(million)

Total concurrency 225,000 O(million) O(billion)

Storage 15 PB 150 PB 500 PB

IO 0.2 TB 10 TB/s 50 TB/s

MTTI days days O(1 day)Slide 89

DOE Exascale Initiative Technical Roadmap

Potential System Architectures
(updates for 2014… what did we get wrong)

Systems 2009 2015 2018 2024
System peak 2 Peta 100-200 Peta 1 Exa

Power 6 MW ~10 MW 15MW ~20 MW

System memory 0.3 PB ~5 PB yes! 10 PB

Node performance 125 GF 400 GF 3TF 1-10TF 10-12TF

Node memory BW 25 GB/s 200 GB/s (2-level!!)
100GB/s@100GB +
500GB/s@16GB

>400 GB/s (2-level)
250GB/s@200GB +
4TB/s @ 32-64GB

Node concurrency 12 O(100) yes O(1000) yes

Interconnect BW (node) 1.5 GB/s 25 GB/s 10-15GB/s 50 GB/s 100+ GB/s

System size (nodes) 18,700 250,000-500,000
30,000 – 60,000

O(million) yes

Total concurrency 225,000 O(million) O(billion)

Storage 15 PB 150 PB 500PB

IO 0.2 TB 10 TB/s
+ burst buffer 100 TB

50 TB/s
+ burst buffer

