Post Exascale/Post-Moore's Law

John Shalf

End of Moore's Law 2024?

Moore's Law is economic theory that underpins our current electronics industry

- 2x more parts each gen. for same price, or same amount for 2x lower price
- Notice that it says nothing about CMOS!!!

• End is near?

- Si Atomic radius is 0.1
- Need large dopant atom population to have reasonable distribution
- 3nm it gets hard to avoid quantum mechanical effects
- Colwell prediction 3nm as last node in 2024 (HotChips2013)
- Tech scaling underpins HPC performance improvements and the impetus to "replace" old machines that pays for HPC.

• **SEMATEC Response**

- We could go to 0.1nm (just insert money)
- But if that doesn't cause you to buy more lithography machines, we'll do something else
- 3D layers, new materials, cheaper machines...
- From \$4B Fab to MakerBot for Silicon? (Anton for everyone!)

OFFICE OF SCIENCE AND TECHNOLOGY POLICY EXECUTIVE OFFICE OF THE PRESIDENT

Computing Beyond the End of Moore's Law: Alternatives for Sustaining Supercomputing Performance Improvements Despite Approaching Limits in Semiconductor Microelectronic Technology

John Shalf¹ and Rob Leland^{2, 3}

March 30, 2014

iARPA/IDA Report (background)

Taxonomy

- Classical digital: (e.g. Jack's Laptop)
- Quantum
- Neuromorphic
- Analog

IDA/iARPA Conclusion

- Invest in extending reach of computing to new areas where digital is not efficient by studying Quantum, Neuromorphic, and Analog
- But don't forget that you need digital (it offers a kind of computation that is not well replicated alternatives)

Post Moore's Law

- Focus of OSTP report is Digital Electronics
 - Reports on Neuromorphic, Quantum from others
- How can we preserve/extend performance/cost-effectiveness of Digital Electronics?
 - New Materials/Better Switch: (new transistor)
 - Circuits (up to 2x according to Bill D.)
 - Lower the cost data movement: photonics, superconducting, lower voltage
 - Architecture: non-von or other (like Thomas says)
 - Packaging/Integration (3DI): limited by power

Properties of a Digital Tech Replacement

(what does a CMOS replacement look like?)

Shekhar Borkar, Jeff Bokor input

- Gain: Less energy to go in to switching than what is being switched
- Noise Immunity how far above kT, how susceptable to stochastic state change
- •Scalability improve with each generation for economic model
- •Manufacturability Carbon nanotubes as an example

CMOS replacement: Replace or embrace?

Spintronics embedded in CMOS

- no-power when not accessed)
- Single-clock-cycle powerdown
- Carbon Nanotube modulators for high-speed lowvoltage data movement over long-haul wires.
 - Nanotubes more sensitive
 - don't have to do inefficient reamplification stages at endpoints that eat in to the power advantage.

Micromechanical relays

- (yes relays).
- Interesting properties when you shrink
- Integrate better with Silicon photonics than electronics (piezo effect to change ring resonance is stronger than electrical effect).