Beyond Exascale:

Extreme-Scale Architecture in the Neo-Digital Age

Thomas Sterling

Professor of Informatics and Computing Chief Scientist, CREST Indiana University July 9, 2014

같은 말을 넣었다. 사람은 것이 아내는

SCHOOL OF INFORMATICS AND COMPUTENC Recommender

INDIANA UNIVERSITY Center for Research in Extreme Scale Technologies ψ

Shifting Paradigms of Computing

- Abacus
 - Counting tables
- Pascaline
- Difference engine
 - Charles Babbage
 - Per Georg Scheutz
- **Tabulators**
 - Herman Hollerith
- Analog computer
 - Vannevar Bush Machine
- Harvard Architecture
 - Howard Aiken
 - Konrad Zuse
 - Charles Babbage Analytical Engine

The von Neumann Age

- Foundations:
 - Information Theory Claude Shannon
 - Computabilty Turing/Church
 - Cybernetics Norbert Wiener
 - Stored Program Computer Architecture von Neumann
- The von Neumann Shift: 1945 1960
 - Vacuum tubes, core memory
 - Technology assumptions
 - ALUs are most expensive components
 - Memory capacity and clock rate are scale drivers mainframes
 - Data movement of secondary importance
- Von Neumann extended: 1960 2014
 - Semiconductor, Exploitation of parallelism
 - Out of order completion
 - Vector
 - SIMD
 - Multiprocessor (MIMD)
 - SMP School on intersection control
 - Maintain sequential consistency
 - MPP/Clusters
 - Ensemble computations with message passing

Conventional Heterogeneous Multicore System Architecture

Assumptions of Conventional Practice

- Binary bit data hardware representation
 - Base-2 logic and storage
- Single word actions format
 - Floats, ints, Booles, pointers
- Program counter control state
 - serialization
 - Plus stack-frame pointers
- Distributed memory, BSP, SPMD, message-passing
- Separation of processing logic and memory storage
 - Von Neumann bottleneck
- Fastest nodes possible with fastest sockets with fastest cores
- Moore's Law and Dennard scaling
 - Dying and dead
 - Semiconductor technology and dies, with some optics
- Static compile/load-time resource allocation and task scheduling
- Legacy codes and programming interface with incremental changes

Advanced GAS Exascale System Architecture

Performance Factors - SLOWER

$$P = e(L,O,W) * s(S) * a(R) * U(E)$$

- P average performance (ops)
- e efficiency (0 < e < 1)
- s application's average parallelism,
- a availability (0 < a < 1)
- U normalization factor/compute unit
- E watts per average compute unit
- R reliability (0 < R < 1)

10. D. DAVA COLEVER SCHOOL SCHOOL

- Starvation
 - Insufficiency of concurrency of work
 - Impacts scalability and latency hiding
 - Effects programmability
- Latency
 - Time measured distance for remote access and services
 - Impacts efficiency
- Overhead
 - Critical time additional work to manage tasks & resources
 - Impacts efficiency and granularity for scalability
- Waiting for contention resolution
 - Delays due to simultaneous access requests to shared physical or logical resources

Semantic Components of ParalleX

Neo-Digital Age

- Goal and Objectives
 - Devise means of exploiting nano-scale semiconductor technologies at end of Moore's Law to leverage fabrication facilities investments
 - Create scalable structures and semantics capable of optimal performance (time to solution) within technology and power limitations

Technical Strategy

- 1. Liberate parallel computer architecture from von Neumann (vN) archaism for efficiency and scalability; eliminate vN bottleneck
- 2. Rebalance and integration of functional elements for data movement, operations, storage, control to minimize time & energy
- 3. Emphasize tight coupled logic locality for low time & energy
- 4. Dynamic adaptive localized control to address asynchrony and expose parallelism with emerging behavior of global computing
- 5. Innovation in execution model for governing principles at all levels¹⁵

Neo-Digital Age – extending past foundations

- Near nano-scale semiconductor technology
 - Flat-lining of Moore's Law at single-digit nano-meters
 - Cost benefits of fab lines for economy of scale through mass-market
- Logic function modules
 - Exploit existing and new IP for efficient functional units
 - ALUs, latches/registers, nearest-neighbor data paths
- Integrated optics
 - Orders of magnitude bandwidth increase
 - Inter-socket
 - On chip
- Advanced packaging and cooling

- Dramatic improvement opportunities in volumetric utilization
- 3-D integration of combined memory/logic/communication dies
- Return to wafer-scale integration

Neo-Digital Age – Principles

- Elimination of vN-based parallel architecture
 - Constrained parallel control state
 - Processor-centric approach optimizes for ALU utilization with very deep memory hierarchy; wrong answer
- ALU-pervasive structures
 - Merge ALUs with storage and communication structures
 - High availability of ALUs rather than high utilization
 - Slashes access latencies to save time and energy
- Cells of logic/memory/data-passing for single-cycle actions
 - Optimized for space/energy/performance
 - Optimized for memory bandwidth utilization
- Emphasis on fine-grain nearest-neighbor data-movement structures
 - Direct access to adjacent state storage
 - Enables communication through nearest neighbor
- Virtual objects in global name space
 - Data, instructions, synchronization
 - Intra-medium packet-switched wormhole routing
 - Dynamic allocation

Prior Art: Non-von Neumann Architectures

- Dataflow
 - Static (Dennis)
 - Dynamic (Arvind)
- Systolic Arrays
 - Streaming (HT Kung)
- Neural Networks connectionist
- Processor in Memory (PIM)

- Bit or word-level logic on-chip at/near sense amps of memory
- SIMD (lobst) or MIMD (Kogge)
- Cellular Automata (CA)
 - Global emergent behavior from local rules and state
 - von Neumann (ironically)
- Continuum Computer Architecture
 - CA with global naming and active packets (Sterling/Brodowicz)

Properties

 X_1

X2

X₃

XN

• Local communication

- Systolic array: mostly
- Dataflow: classically not
- Processor in Memory: logic at the sense amps
- Cellular Automata: fully
- Continuum Computer Architecture: fully, with pipelined packet switche
- Neural networks: not

• Event driven for asynchrony management

- Systolic array: classically not, iWarp yes
- Dataflow: yes
- PIM: no
- Cellular Automata: can be
- CCA: yes
- Neural networks: classically no, neuromorphic yes
- Merged logic/storage/communication
 - Systolic array: yes
 - Dataflow: classically not, possible
 - PIM: yes
- NRAMANA INA MPROPERTY
- Cellular Automata: yes
- CCA: yes
- Neural networks: yes

Wa

Performance

- Maximum ALUs
 - For high utilization
- Maximum memory bandwidth
- Lots of inter-cell communication bandwidth
- Reduced overhead
- Reduced latency
- Adaptive routing for contention avoidance
- Multi-variate storage beyond the bit
- Multi-variate logic beyond base-2 Boolean
- Dynamic adaptive execution model

Energy

- Minimize distance between elements
 - Permeate structures with ALUs
 - Short latencies between memory & registers
- Multiple clock rates to match timings between logic and storage and
- Neighbor cell memory/register access
- Eliminate large caches and multi-level caches
- Eliminate speculative execution

LE, DIENSE UN DE 33seuro de la servicio a su su Montren

Questions can be Answered Now

- 1. Trade-offs of DRAM bits and SRAM bits
 - Space, Time, Energy
- 2. Cell rules
 - derived from parallel execution model
- 3. Cell granularity
 - Breakpoint where mitosis is better
- 4. Design of logic cell (Fonton)
 - Very simple compared to full conventional processors
- 5. Reference implementation
 - Emulation, Simulation, FPGA, ASIC, custom
- 6. 3-D packaging
- 7. Software environment
- 8. Application analysis

Conclusions

- Moore's Law is flat-lining
- > Architecture may deliver another performance boost
- Neo-digital age defined as post von Neumann architecture era using advanced semiconductor technology
- Exploitation of nearest neighbor structures, ALU intensive for low latency, lightweight cells for high concurrency
- Requires alternative execution model
- All R&D can be undertaken now

LE, LELE AN UNAL STREET AND COMPLETE SCHOOL OF INTERACTICS AND COMPLETES Maximy on

