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Augmenting CMOS

e Silicon CMOS circuits have been the central technology of the
digital revolution for 40 years, and the performance of CMOS
devices and systems have been following Moore's law (doubling in
performance every year or two) for the past several decades,
together with device scaling to smaller dimensions and integration
to larger scales. CMOS appears to be reaching physical limits,
including size and power density, but there is presently no
technology available that can take its place. How should CMOS be
augmented with integration of new materials, devices, logic, and
system design, in order to extend enhancement of computer
performance for the next decade or more? This approach strongly
overlaps with the semiconductor industry roadmap (ITRS), so RCS 2
coordinated this topic with ITRS.



O Nanoparticle — “On” “Oft”

Fig.1. Simulated self-assembled nanocell is depicted. The black rectangles at
the edges are the I/O leads. The entire cell, excluding the outer portions of the
contact pads, would be approximately 1 pm?.

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 1, NO. 2, JUNE 2002



Nano-cell Tiles

 Network is static per cell

* Nanocell is trained post-fabrication by
changing the states of molecular switches

* Mortal Programming

1. finding switch states such that the given
nanocell functions as the target logic device and

2. finding a series of voltage pulses (applied to the

/0O pins) that give rise to these desired switch
states.



1 bit adder
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Fig. 6. A 1-bit adder is demonstrated on a randomly assembled nanocell using the SPICE interface model. The plots show the V'(¢) for the inputs, /() for the
outputs and the /(") curve used for the molecules in the ON state. The OFF state is the same as in Fig. 3. The truth table for a 1-bit adder is displayed, as well.



Neuromorphic Computing

A brain is constructed from slow, non-uniform, unreliable
devices on the 10 um scale, yet its computational
performance exceeds that of the best supercomputers in
many respects, with much lower power dissipation. What
can this teach us about the next generation of electronic
computers? Neuromorphic computing studies the
organization of the brain (neurons, connecting synapses,
hierarchies and levels of abstraction, etc.) to identify those
features (massive device parallelism, adaptive circuitry,
content addressable distributed memory) that may be
emulated in electronic circuits. The goal is to construct a

new class of computers that combines the best features of
both electronics and brains.
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Processing Powers

What they do well What they're good for
Neuromorphic chips Detect and predict patterns Applications that are rich in visual

in complex data, using relatively  or auditory data and that require

little electricity a machine to adjust its behavior

as it interacts with the world

Traditional chips Reliably make precise Anything that can be reduced
(von Neumann calculations to a numerical problem, although
architecture) more complex problems require

substantial amounts of power
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Power Efficiency Scaling
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MOSFET Channel Modeling of
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Field Programmable Analog Arrays

Programmability

Parameters, variables,
tuning, mismatch
compensation

Analog: qumting-Gutu Transistors

v
dd \- s
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Typical Examples:
SRAM /DRAM /
EPROM

:3u1
]

Alternative is building a DAC

( = x2 area / power increase for each new bit)

-

Reconfigurability

Change in Analog: FPAA solutions
(T

topology, casllcasllcasll cap2
program,

> data flow CABLICABL|CABH| CAR2
Typical Examples:  [caBf|caB||caB||caB2
P, DSP, GPUs,
FPGAs CAR3

Neurobiology: Architecture of groups

Neurobiology: Synapses, long-term channel / neuron dynamics

of neurons, layers, interconnection, eltc.
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S20M dollar Cortex in 20207
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Qualcomm could
add a “neural
processing unit” to
mobile-phone chips
to handle sensory
data and tasks such
as image
recognition.

Vision of Future Mobile Intelligent Assistant




Qualcomm Neuromorphic Chip




Shaw, Cox, Besterman, Minyard, Sassano, et al.

.

Fig. 1 Concept Models: (a) BrainCube, (b) Sensor Leaves, (c) Conversation Flower, (d) Jellyfish, (¢) Tumbleweed, (f) Vision
Cubes, (g) Composable Cubes, (h) Vision Assistive, (i) Home Health Wand and Pulmonary Monitor, (j) Build-a-Brain



Approximate Computing

e Historically computing hardware and software were
designhed for numerical calculations requiring a high
degree of precision, such as 32 bits. But many present
applications (such as image processing and data
mining) do not require an exact answer; they just need
a sufficiently good answer quickly. Furthermore,
conventional logic circuits are highly sensitive to bit
errors, which are to be avoided at all cost. But as
devices get smaller and their counts get larger, the
likelihood of random errors increases. Approximate
computing represents a variety of software and
hardware approaches that seek to trade off accuracy
for speed, efficiency, and error-tolerance.



Adiabatic/Reversible Computing

* One of the primary sources of power dissipation
in digital circuits is associated with switching of
transistors and other elements. The basic binary
switching energy is typically far larger than the
fundamental limit ~“kT, and much of the energy is
effectively wasted. Adiabatic and reversible
computing describe a class of approaches to
reducing power dissipation on the circuit level by
minimizing and reusing switching energy, and
applying supply voltages only when necessary.



Adiabatic and Reversable Computing

CMOS implementation would require 27x circuit overhead

Milestone targets 64-bit adder and/or 1 Gflops processors using 1% of current power

Conventional switching Adiabatic switching
5 £ 2RC
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2
v .supply 5 v
O'V\Nl supply
time
QCA nSQUID
Represent binary information by r f
charge configuration L 2
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Ultra-Low Power Circuit Design

Combination of ideas.. Adiabatic for low power.. Low Clock for Low Power ..

3D stacking (either from packaging, or novel fab for high-density)

1 Mhz x 10%> Transistors == 3,000x improvement over current 2D design point

Timeframe Today Changes Tomorrow
Integration scale 10° logic transistors x10’ 10" logic transistors
Clock speed 3 GHz 3000x slower 1 MHz

Performance Chip is 2D comprised of | 3000x reduction in

100 nm’ gates.

V4

joules/op
OR

3000x increase in
energy efficiency

Chip is 3D comprised of
100 nm’ gates.




Scaling Clock Down and Layers Up

2014
Transistors 1.00E+09
Stack Depth 1
Voltage (relative to 2014) 1.00
Clock Rate 3000.00

Net Performance (FOM)

Node on Node

Transistor Improvement 1.5
Stack Improvement 1.4
Clock Decrease 1.4

Voltage Decrease 1.05

2016

1.50E+09
4

0.95
2142.86

2018

2.25E+09
6

0.91
1530.61

2020

3.38E+09
8

0.86
1093.29

2022

5.06E+09
11

0.82
780.92

2024

7.59E+09
15

0.78
557.80

2026

1.14E+10
22

0.75
398.43

2028

1.71E+10
30

0.71
284.59

2030

2.56E+10
42

0.68
203.28

2032

3.84E+10
59

0.64
145.20

2034

5.77E+10
83

0.61
103.71

2036

8.65E+10
116

0.58
74.08
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Current computer technology:

Hardware:

Software for von Neumann

architecture:
e FORTRAN, C, Java
e SQL
e HTML
e etc.

-

RCS2 Trending...

Emerging vision of rebooted computer technology:
Hardware:

¢ Continued exponential increase in
devices using third dimension

e Improved power efficiency

Merged CPU

+ Memory

Software modes:

» o von Neumann-class (FORTRAN, C, Java, SQL, HTML, etc.)
e Highly-parallel (GPU code like CUDA)
e Neuromorphic
e Approximate
e etc.



On the Way to the Forum

* Simple but complete abstractions to test new
computing substrates

* Ultra RISC is one such approach
— One Instruction Set Computer (OISC)
* Universal computers

— Transport Triggered Architecture Machines
— Bit Manipulating Machines

— Arithmetic Based Turing-Complete Machines*



SUBLEQ

Subtract and branch if less than or equal to zero

The subleq instruction ("SUbtract and Branch if Less than
or EQual to zero") subtracts the contents at address a
from the contents at address b, stores the result at
address b, and then, if the result is not positive, transfers
control to address c (if the result is positive, execution
proceeds to the next instruction in sequence).

subleqg a, b, c ; Mem[b] = Mem|[b] - Mem|[a]
; if (Mem[b] < 0) goto c



28 Subleqg on an FPGA

FPGA

«—>» PROCESSOR1 =——>» MEMORY
<——>» PROCESSOR2 ==—>» MEMORY

-«€—» PROCESSOR3 =—>» MEMORY

|
USB <«—» CONTROLCPU <€«——>  SPI |
|
|
|
|
|
|
|
|

=<€—>» PROCESSOR27 €€—>» MEMORY

«<— > PROCESSOR28 €«—>» MEMORY

Figure 2 Block-diagram of the board



28 Subleqg on an FPGA

USBE <€«—» CONTROLCPU -€«—  SP|

; 5, ™ ' ‘-_:, =
Figure 4 FPGA board, 28 Subleq processors with

Figure 2 Block-di: allocated 2 Kb per processor



Carbon Nanotube Computer
Stanford in Nature September 2013

LETTER

doi:10.1038/naturel2502

Carbon nanotube computer

Max M. Shulaker', Gage Hills?, Nishant Patil®, Hai Wei*, Hong-Yu Chen®, H.-S. Philip Wong® & Subhasish Mitra’

The miniaturization of electronic devices has been the principal
driving force behind the semiconductor industry, and has brought
about major improvements in computational power and energy
efficiency. Although advances with silicon-based electronics continue
to be made, alternative technologies are being explored. Digital cir-
cuits based on transistors fabricated from carbon nanotubes (CNTs)

to incorrect logic functionality, whereas metallic CNTs have little or
no bandgap, resulting in high leakage currents and incorrect logic
functionality®®. The imperfection-immune design methodology, which
combines circuit design techniques with CNT processing solutions,
overcomes these problems®**'. It enables us to demonstrate, for the
first time. a complete CNT computer. realized entirelv usine CNFETs.



MIPS on top of SUBNEG on top of CNT

Instruction fetch 4
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Figure 1 | SUBNEG and program
implementation. a, Flowchart
showing the implementation of the
SUBNEG instruction. b, Sample
program on CNT computer. Each
row of the chart is a full SUBNEG
instruction. It is composed of two
data addresses and a partial next
instruction address. The (omitted)
least significant bit (LSB) of the next
instruction address is calculated by
the arithmetic unit of the CNT
computer, and the most significant
bit (MSB) of the next instruction
address indicates the running
program, either a counter or
bubble-sort algorithm in this
instance.



CNT Schematic

The CNFET computer is composed of 178 CNFETs, with each CNFET
comprising, 10—-200 CNTs, depending on relative sizing of the widths of the

CNFETs.
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Figure 3 | Characterization of CNFET subcomponents. a, Top: Final 4-inch
wafer after all fabrication. Middle: scanning electron microscope (SEM) image
of a CNFET, showing source, drain and CNTs extending into the channel
region. Bottom, Measured characterization (current-voltage) curves of a
typical CNFET. The yellow highlighted region of the In-Vps curve shows the
biasing region that the CNFET operates in for the CNT computer. b, Top:

Time (ms) Time (ms)

transistor-level schematic of arithmetic unit. Numbers are width of transistors
(in micrometres). Middle: SEM of an arithmetic unit. Bottom: measured
outputs from 40 different arithmetic units, all overlaid. ¢, Top: transistor-level
schematic of D-latches. Numbers are width of transistors (in micrometres).
Middle: SEM of a bank of 4 D-latches. Bottom: measured outputs from 200
different D-latches, all overlaid.



a @ Instruction fetch @ Data fetch Arithmetic operation ) Write-back

b @ Expected @ Measured
s Data fetch addresses wsms Arithmetic result and next instruction address calculation
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Figure 4 | CNT computer results. a, SEM of an entire CN'T computer. performing counting and sorting (bubble-sort algorithm). The running
b, Measured and expected output waveforms for a CNT computer, running the  results of the counting and sorting are shown in the rows beneath the MSB of
program shown in Fig. 1b. The exact match in logic value of the measured the next instruction address. ¢, A list of the 20 MIPS instructions tested on

and expected output shows correct operation. As shown by the MSB (denoted  the CNT computer.
[4]) of the next instruction address, the computer is switching between



Some Other Things to Ponder

 Abstractions that can be used to evaluate future
computing substrates (OISC or better)

— Von neumann

— Neuromorphics
* Programming models that encompass
— Abstract models of data structures (e.g. IPM)

— Data storage concepts into the language (e.g. NVRAM)
— Computable Knowledge concepts into the language



Prizes for Rebooting Computing?

IEEE Competition for Low-Power Image Recognition, Yung-Hsiang Lu, Purdue

Prof. Lu proposed an IEEE prize competition, focusing on Low-Power Image Recognition using a mobile
device, possibly for 2015. This would involve presentation of a set of test images to the device, and a
limited time to accurately identify the images.

test images | input

|
|
|
! Image Recognition and
I Classification System
l
|

power

result

Accuracy
energy meter Score =—

2014/0%/48 Resootine Comaoutine 2

Energy



