
Programming Script-based Data

Analytics Workflows on Clouds	

F. Marozzo, Domenico Talia, P. Trunfio	

	

University of Calabria, ICAR-CNR, DtoK Lab	

Italy	

talia@dimes.unical.it	

Goals	

S  Using Cloud services for scalable execution of data
analysis applications (expressed as workflows).	

S  Defining a script-based programming model for the Data
Mining Cloud Framework (DMCF).	

S  Implementing the JS4Cloud language (based on that model).	

S  Evaluating the performance of JS4Cloud data mining
workflows on DMCF.	

2

Talk outline	

1.  Introduction	

2.  The Data Mining Cloud Framework	

3.  The key features of JS4Cloud	

a.  Programming concepts	

b.  Functions	

c.  Patterns	

4.  Performance figures	

5.  Final remarks	

3

Introduction	

S  Workflows have proven to be effective in describing complex
data analysis tasks and applications linking	

S  data sources,	

S  filtering tools,	

S  mining algorithms,	

S  Visualization tools, and 	

S  knowledge models.	

S  Data analysis workflows often include concurrent
compute-intensive tasks that can be efficiently executed
on scalable computing infrastructures like Clouds.	

4

Introduction	

S  We use Cloud services for scalable execution of data analysis
workflows in the Data Mining Cloud Framework
(DMCF).	

S  Data analysis workflows in DMCF are DAGs originally
designed only through a visual programming interface.	

S  Visual programming is an effective design approach for high-
level users (domain-expert analysts with limited coding skill).	

S  In DMCF task and data parallelism is implicit
(data-driven).	

5

Introduction	

S  Recently we extended DMCF adding a script-based
data analysis programming model as a more
flexible programming interface.	

S  A script language allows experts to program complex
applications more rapidly, in a more concise way and
with higher flexibility.	

S  The idea is to provide a script-based data analysis
language as an additional and more flexible
programming interface to skilled users.	

6

Data Mining Cloud Framework 	

7

•  Virtual Compute Servers for
executing the workflow tasks. 	

•  Virtual Web Servers for the
user interface.	

•  A Data Folder of input data and
results.	

•  A Tool Folder for libraries and
task code.	

•  Data Table and Tool Table for
metadata of data sources and tools.	

•  Application Table, Task
Table, and Users Table. 	

•  Task Queue of tasks ready to be
executed. 	

 DMCF	

Data Mining Cloud Framework 	

8

① Users access a Website and
design the application
workflows.	

②  After submission, the
runtime selects the
workflow tasks and inserts
them into the Task Queue on
the basis of dependencies.	

③  Each idle Virtual compute
server picks a task from the
Task Queue, and concurrently
forks its execution.!

Data Mining Cloud Framework 	

9

④  Each Virtual compute server
gets the input dataset(s) from
its location.	

⑤  After task completion, each
Virtual compute server stores
the result in a data storage
element.	

⑥  The Website notifies the user
as soon as her/his task(s) have
completed, and allows her/him
to access the results. 	

Visual workflows in DMCF	

10

Workflows includes two types of nodes:	

•  Data nodes represent input or output data elements. A data node can

be a Dataset or a Model created by data analysis (e.g., a decision tree).	

•  Tool nodes represent tools performing any kind of operation that can

be applied to a data node (filtering, splitting, data mining, etc.).	

The JS4Cloud script language	

S  JS4Cloud (JavaScript for Cloud): a language for programming
data analysis workflows.	

S  Main benefits of JS4Cloud: 	

S  it is based on a well known scripting language, so users do

not have to learn a new language from scratch;	

S  it implements a data parallelism and data-driven

task parallelism that automatically spawns ready-to-run
tasks to the available Cloud resources;	

S  it exploits implicit task parallelism so application
workflows can be programmed in a totally sequential way
(no user duties for work partitioning, synchronization and
communication).	

11

JS4Cloud functions	

12

JS4Cloud implements three additional functionalities, implemented by the set
of functions:	

•  Data.get, for accessing one or a collection of datasets stored in the Cloud;	

•  Data.define, for defining new data elements that will be created at

runtime as a result of a tool execution;	

•  Tool, to invoke the execution of a software tool/module available in the

Cloud as a service.	

Task Parallelism exploitation	

13

JS4Cloud patterns	

14

var DRef = Data.get("Customers");!
var nc = 5;!
var MRef = Data.define("ClustModel");!
K-Means({dataset:DRef, numClusters:nc, model:MRef});!

Single task	

JS4Cloud patterns	

15

Pipeline	

var DRef = Data.get("Census");!
var SDRef = Data.define("SCensus");!
Sampler({input:DRef, percent:0.25, output:SDRef});!
var MRef = Data.define("CensusTree");!
J48({dataset:SDRef, confidence:0.1, model:MRef});!

JS4Cloud patterns	

16

Data partitioning	

var DRef = Data.get("CovType");!
var TrRef = Data.define("CovTypeTrain");!
var TeRef = Data.define("CovTypeTest");!
PartitionerTT({dataset:DRef, percTrain:0.70,!
 trainSet:TrRef, testSet:TeRef});!

JS4Cloud patterns	

17

var DRef = Data.get("NetLog");!
var PRef = Data.define("NetLogParts", 16);!
Partitioner({dataset:DRef, datasetParts:PRef});!

Data partitioning (2)	

JS4Cloud patterns	

18

var M1Ref = Data.get("Model1");!
var M2Ref = Data.get("Model2");!
var M3Ref = Data.get("Model3");!
var BMRef = Data.define("BestModel");!
ModelChooser({model1:M1Ref, model2:M2Ref,!
 model3:M3Ref, bestModel:BMRef});!

Data aggregation	

JS4Cloud patterns	

19

var MsRef = Data.get(new RegExp("^Model"));!
var BMRef = Data.define("BestModel");!
ModelChooser({models:MsRef, bestModel:BMRef});!

Data aggregation (2)	

JS4Cloud patterns	

20

var TRef = Data.get("TrainSet");!
var nMod = 5;!
var MRef = Data.define("Model", nMod);!
var min = 0.1;!
var max = 0.5;!
for(var i=0; i<nMod; i++)!
 J48({dataset:TRef, model:MRef[i],!
 confidence:(min+i*(max-min)/(nMod-1))});!

Parameter sweeping	

JS4Cloud patterns	

21

var nMod = 16;!
var MRef = Data.define("Model", nMod);!
for(var i=0; i<nMod; i++)!
 J48({dataset:TsRef[i], model:MRef[i], confidence:0.1});!

Input sweeping	

JS4Cloud patterns	

22

Input sweeping (2)	

var nData = 5, nMod = 3;!
var CRef = Data.define("ClassD", [nData, nMod]);!
for(var i=0; i<nData; i++)!
 for(var j=0; j<nMod; j++)!
 Predictor({dataset:DRef[i], model:MRef[j], classDataset:CRef[i][j]});!

JS4Cloud patterns	

23

var nTr = 10;!
var conf = [0.1, 0.2, 0.3, 0.4, 0.5];!
var MRef = Data.define("Model", [nTr, conf.length]);!
for(var i=0; i<nTr; i++)!

!for(var j=0; j<conf.length; j++)!
! !J48({dataset:TsRef[i], model:MRef[i][j], confidence:conf[j]});!

Input/Parameter sweeping!

Performance evaluation	

24

•  Input dataset: 46 million tuples (size: 5 GB).	

•  Used Cloud: up to 64 virtual servers (single-core 1.66 GHz CPU,

1.75 GB of memory, and 225 GB of disk)	

Monitoring interface	

25

•  A snapshot of the application during its execution monitored
through the programming interface.	

Turnaround and speedup	

26

107 hours
(4.5 days)!

2 hours!

7.6!

50.8!

Efficiency	

27

0.96!

0.8!

0.9!

Another app example	

•  Ensemble learning workflow (gene analysis for classifying cancer types)	

•  Turnaround time: 162 minutes on 1 server, 11 minutes on 19 servers.	

•  Speedup: 14.8 	

Final remarks	

S  Main benefits of JS4Cloud are: 	

a.  it is based on a well known scripting language, so that users do not have to

learn a new language from scratch;	

b.  it implements a data-driven task parallelism that automatically

spawns ready-to-run tasks to the available Cloud resources and data
parallelism;	

c.  by exploiting implicit parallelism, application workflows can be
programmed in a totally sequential way, users are free from
duties like work partitioning, synchronization and
communication.	

S  Experimental performance results prove the effectiveness of
the proposed language for programming data analysis
workflows	

S  Scalability can be achieved by executing such workflows on a public Cloud

infrastructure.	

29

Ongoing & future work	

S  DtoK Lab is a startup that originated from our work in this area.	

	

 	

	

 	

 www.scalabledataanalytics.com	

S  The DMCF system is delivered on public clouds as a high-performance
Software-as-a-Service (SaaS) to provide innovative data analysis tools
and applications.	

S  Applications in the area of social data analysis, urban
computing, air traffic and others have been developed by JS4Cloud.	

30

Thanks	

31

Fabrizio Marozzo	

Paolo Trunfio	

COAUTHORS	

