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Goals	



S  Using Cloud services for scalable execution of data 
analysis applications (expressed as workflows).	



S  Defining a script-based programming model for the Data 
Mining Cloud Framework (DMCF).	



S  Implementing the JS4Cloud language (based on that model).	



S  Evaluating the performance of JS4Cloud data mining 
workflows on DMCF.	
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Talk outline	



1.  Introduction	



2.  The Data Mining Cloud Framework	



3.  The key features of JS4Cloud	


a.  Programming concepts	


b.  Functions	


c.  Patterns	



4.  Performance figures	



5.  Final remarks	
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Introduction	



S  Workflows have proven to be effective in describing complex 
data analysis tasks and applications linking	


S  data sources,	


S  filtering tools,	


S  mining algorithms,	


S  Visualization tools, and 	


S  knowledge models.	



S  Data analysis workflows often include concurrent 
compute-intensive tasks that can be efficiently executed 
on scalable computing infrastructures like Clouds.	
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Introduction	



S  We use Cloud services for scalable execution of data analysis 
workflows in the Data Mining Cloud Framework 
(DMCF).	



S  Data analysis workflows in DMCF are DAGs originally 
designed only through a visual programming interface.	



S  Visual programming is an effective design approach for high-
level users (domain-expert analysts with limited coding skill).	



S  In DMCF task and data parallelism is implicit 
(data-driven).	
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Introduction	



S  Recently we extended DMCF adding a script-based 
data analysis programming model as a more 
flexible programming interface.	



S  A script language allows experts to program complex 
applications more rapidly, in a more concise way and 
with higher flexibility.	



S  The idea is to provide a script-based data analysis 
language as an additional and more flexible 
programming interface to skilled users.	
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Data Mining Cloud Framework 	
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•  Virtual Compute Servers for 
executing the workflow tasks. 	



•  Virtual Web Servers for the 
user interface.	



•  A Data Folder of input data and 
results.	



•  A Tool Folder for libraries and 
task code.	



•  Data Table and Tool Table for 
metadata of data sources and tools.	



•  Application Table, Task 
Table, and Users Table. 	



•  Task Queue of tasks ready to be 
executed. 	



 DMCF	





Data Mining Cloud Framework 	
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① Users access a Website and 
design the application 
workflows.	



②  After submission, the 
runtime selects the 
workflow tasks and inserts 
them into the Task Queue on 
the basis of dependencies.	



③  Each idle Virtual compute 
server picks a task from the 
Task Queue, and concurrently 
forks its execution.!



Data Mining Cloud Framework 	
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④  Each Virtual compute server 
gets the input dataset(s) from 
its location.	



⑤  After task completion, each 
Virtual compute server stores 
the result in a data storage 
element.	



⑥  The Website notifies the user 
as soon as her/his task(s) have 
completed, and allows her/him 
to access the results. 	





Visual workflows in DMCF	
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Workflows includes two types of nodes:	


•  Data nodes represent input or output data elements. A data node can 

be a Dataset or a Model created by data analysis (e.g., a decision tree).	


•  Tool nodes represent tools performing any kind of operation that can 

be applied to a data node (filtering, splitting, data mining, etc.).	





The JS4Cloud script language	



S  JS4Cloud (JavaScript for Cloud): a language for programming 
data analysis workflows.	



S  Main benefits of JS4Cloud: 	


S  it is based on a well known scripting language, so users do 

not have to learn a new language from scratch;	


S  it implements a data parallelism and data-driven 

task parallelism that automatically spawns ready-to-run 
tasks to the available Cloud resources;	



S  it exploits implicit task parallelism so application 
workflows can be programmed in a totally sequential way 
(no user duties for work partitioning, synchronization and 
communication).	
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JS4Cloud functions	
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JS4Cloud implements three additional functionalities, implemented by the set 
of functions:	


•  Data.get, for accessing one or a collection of datasets stored in the Cloud;	


•  Data.define, for defining new data elements that will be created at 

runtime as a result of a tool execution;	


•  Tool, to invoke the execution of a software tool/module available in the 

Cloud as a service.	





Task Parallelism exploitation	
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JS4Cloud patterns	
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var DRef = Data.get("Customers");!
var nc = 5;!
var MRef = Data.define("ClustModel");!
K-Means({dataset:DRef, numClusters:nc, model:MRef});!

Single task	





JS4Cloud patterns	
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Pipeline	



var DRef  = Data.get("Census");!
var SDRef = Data.define("SCensus");!
Sampler({input:DRef, percent:0.25, output:SDRef});!
var MRef  = Data.define("CensusTree");!
J48({dataset:SDRef, confidence:0.1, model:MRef});!



JS4Cloud patterns	
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Data partitioning	



var DRef  = Data.get("CovType");!
var TrRef = Data.define("CovTypeTrain");!
var TeRef = Data.define("CovTypeTest");!
PartitionerTT({dataset:DRef, percTrain:0.70,!
               trainSet:TrRef, testSet:TeRef});!



JS4Cloud patterns	
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var DRef = Data.get("NetLog");!
var PRef = Data.define("NetLogParts", 16);!
Partitioner({dataset:DRef, datasetParts:PRef});!

Data partitioning (2)	





JS4Cloud patterns	
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var M1Ref = Data.get("Model1");!
var M2Ref = Data.get("Model2");!
var M3Ref = Data.get("Model3");!
var BMRef = Data.define("BestModel");!
ModelChooser({model1:M1Ref, model2:M2Ref,!
              model3:M3Ref, bestModel:BMRef});!

Data aggregation	





JS4Cloud patterns	
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var MsRef = Data.get(new RegExp("^Model"));!
var BMRef = Data.define("BestModel");!
ModelChooser({models:MsRef, bestModel:BMRef});!

Data aggregation (2)	





JS4Cloud patterns	



20 

var TRef = Data.get("TrainSet");!
var nMod = 5;!
var MRef = Data.define("Model", nMod);!
var min = 0.1;!
var max = 0.5;!
for(var i=0; i<nMod; i++)!
   J48({dataset:TRef, model:MRef[i],!
       confidence:(min+i*(max-min)/(nMod-1))});!

Parameter sweeping	





JS4Cloud patterns	
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var nMod = 16;!
var MRef = Data.define("Model", nMod);!
for(var i=0; i<nMod; i++)!
  J48({dataset:TsRef[i], model:MRef[i], confidence:0.1});!

Input sweeping	





JS4Cloud patterns	
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Input sweeping (2)	



var nData = 5, nMod = 3;!
var CRef = Data.define("ClassD", [nData, nMod]);!
for(var i=0; i<nData; i++)!
  for(var j=0; j<nMod; j++)!
    Predictor({dataset:DRef[i], model:MRef[j], classDataset:CRef[i][j]});!



JS4Cloud patterns	
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var nTr = 10;!
var conf = [0.1, 0.2, 0.3, 0.4, 0.5];!
var MRef = Data.define("Model", [nTr, conf.length]);!
for(var i=0; i<nTr; i++)!

!for(var j=0; j<conf.length; j++)!
! !J48({dataset:TsRef[i], model:MRef[i][j], confidence:conf[j]});!

Input/Parameter sweeping!



Performance evaluation	
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•  Input dataset:    46 million tuples (size: 5 GB).	


•  Used Cloud: up to 64 virtual servers (single-core 1.66 GHz CPU, 

1.75 GB of memory, and 225 GB of disk)	





Monitoring interface	
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•  A snapshot of the application during its execution monitored 
through the programming interface.	





Turnaround and speedup	
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107 hours 
(4.5 days)!

2 hours!

7.6!

50.8!



Efficiency	
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0.96!

0.8!

0.9!



Another app example	



•  Ensemble learning workflow (gene analysis for classifying cancer types)	


•  Turnaround time: 162 minutes on 1 server,  11 minutes on 19 servers.	


•  Speedup:  14.8 	





Final remarks	



S  Main benefits of JS4Cloud are: 	


a.  it is based on a well known scripting language, so that users do not have to 

learn a new language from scratch;	


b.  it implements a data-driven task parallelism that automatically 

spawns ready-to-run tasks to the available Cloud resources and data 
parallelism;	



c.  by exploiting implicit parallelism, application workflows can be 
programmed in a totally sequential way, users are free from 
duties like work partitioning, synchronization and 
communication.	



S  Experimental performance results prove the effectiveness of 
the proposed language for programming data analysis 
workflows	


S  Scalability can be achieved by executing such workflows on a public Cloud 

infrastructure.	
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Ongoing & future work	



S  DtoK Lab is a startup that originated from our work in this area.	



	

 	

	

 	

 www.scalabledataanalytics.com	



S  The DMCF system is delivered on public clouds as a high-performance 
Software-as-a-Service (SaaS) to provide innovative data analysis tools 
and applications.	



S  Applications in the area of social data analysis, urban 
computing, air traffic and others have been developed by JS4Cloud.	
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