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Performance Development of HPC Over the Last 20 
Years from Top 500 Supercomputers Worldwide 
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• Practical Considerations:  achieving “buy-in” from general scientific community ! need to: 
-  Distinguish between “voracious” (more of same - just bigger & faster) vs. 

“transformational” (achievement of major new levels of scientific understanding) 
-  Improve on experimental validation together with verification & uncertainty 

quantification to enhance realistic predictive capability of both hypothesis-driven and big-
data-driven statistical approaches 

-  New software engineering tools & environments to enable improved “time to solution” -- 
without big tax on improvements of science in targeted applications  

• Associated Extreme Scale Computing Challenges:  As hardware performance & storage capacity 
increases through many orders of magnitude, 

à Produce advances featuring balanced combination of memory bandwidth, interconnect performance, 
computational performance, & reliability  

n  Hardware complexity:   Heterogenous multicore (e.g., gpu+cpu è “Titan”; mic+cpu è “TH-2”) 
n  Software challenges: New operating systems, I/O and file systems, and coding/algorithmic & solver 

advances in volatile environment of vastly increased computer architecture complexity that demands 
rewriting code focused on data movement over arithmetic è  innovative deployable software! 

• Applications Imperative:  “Accountability” aspect 
! Need to articulate what impactful scientific and mission advances have been enabled  by the 

rapid progress from terascale to petascale to today’s multi-petascale HPC capabilities?  

Applications Impact "  Actual value of extreme Scale HPC to scientific domain 
applications & industry  
 



Advanced Scientific HPC Codes ---  “a measure of the state of 
understanding of natural and engineered systems”  
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*Modern “co-design” 
Challenges:  low memory/
core; locality; latency; ….. 
 



ITER Goal:  Demonstration of the Scientific and  
Technological Feasibility of Fusion Power 

•  ITER is an ~$25B facility located in France & involving 7 
governments representing over half of world’s population 

    ! dramatic next-step for Magnetic Fusion Energy (MFE) 
producing a sustained burning plasma 
 -- Today:  10 MW(th) for 1 second with gain ~1 
 -- ITER:  500 MW(th) for >400 seconds with gain >10 
 

•  “DEMO” will be demonstration fusion reactor after ITER 
 --  2500 MW(th) continuous with gain >25, in a device of similar size and 
field as ITER 

•  Ongoing R&D programs worldwide [experiments, theory, 
computation, and technology]  essential to provide growing 
knowledge base for ITER operation targeted for ~ 2020 

 
" Realistic HPC-enabled simulations required to cost-

effectively plan, “steer,” & harvest key information from 
expensive (~$1M/long-pulse) ITER shots 

 

ITER 



  

Microturbulence in Fusion Plasmas – Mission Importance:  Fusion reactor size & cost 
determined by balance between loss processes & self-heating rates  

 • “Scientific Discovery” - Transition to 
favorable scaling of confinement produced in 
simulations for ITER-size plasmas    

      - a/ρi = 400 (JET, largest present lab 
experiment) through 

      - a/ρi = 1000 (ITER, ignition experiment) 
 
•  Multi-TF simulations using GTC global PIC 

code [Z. Lin, et al, 2002) deployed  a billion 
particles, 125M spatial grid points; 7000 time 
steps  è 1st ITER-scale simulation with ion 
gyroradius resolution  

  
•    BUT, compelling understanding of plasma 

size scaling demands higher physics fidelity 
requiring much greater computational 
resources + new algorithms & modern 
diagnostics for VV&UQ  

! Progress from current DOE INCITE Projects 
on LCF’s & from ongoing G8 Fusion 
Exascale Project on major international 
facilities 

Good news for 
 ITER! 

Ion transport 

 
 

è Excellent Scalability of Global PIC Codes on modern  
HPC platforms enables much greater resolution/physics 
fidelity to improve understanding 
 
è BUT - further improvements for efficient usage of 
current LCF’s demands code re-write featuring modern 
CS/AM methods addressing locality, low-memory-per-
core, …...  
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Particle Simulation of the Boltzmann-Maxwell System 

• The Boltzmann equation (Nonlinear PDE in Lagrangian coordinates):	
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• “Particle Pushing” (Linear ODE’s)	
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• Klimontovich-Dupree representation,	
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• Poisson’s Equation:  (Linear PDE in Eulerian coordinates (lab frame) 	
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• Ampere’s Law and Faraday’s Law   [Linear PDE’s  in Eulerian 
coordinates (lab frame)] 	



	





Basic Particle-in-Cell Method  
•  Charged particles sample distribution function 
•  Interactions occur on a grid with the forces determined by gradient 

of electrostatic potential  (calculated from deposited charges) 
•  Grid resolution dictated by Debye length (“finite-sized” particles) up 

to gyro-radius scale 

Specific PIC Operations: 
•  “SCATTER”, or deposit, 

charges as “nearest 
neighbors” on the grid 

•  Solve Poisson Equation for 
potential 

•  “GATHER” forces (gradient of 
potential) on each particle  

•  Move particles (PUSH) 
•  Repeat… 



New Physics Insights on Fusion Confinement Scaling Enabled by Computing at Extreme Scale 
DOE INCITE Project on “Kinetic Simulations of Fusion Energy Dynamics @ Extreme Scale” 

Impact  Objectives  

• Develop modern software capable of using low 
memory supercomputers to carry out high 
physics fidelity first principles simulations of 
multiscale tokamak plasmas for magnetic 
fusion energy (MFE) 

 
• Fusion Physics & HPC Challenges: 
à  Key decade-long MFE estimates of 

confinement scaling with device size (“Bohm 
to Gyro-bohm” trend) need much higher 
resolution to be realistic/reliable. 

à Major algorithmic advances needed for MFE 
global PIC codes to effectively engage 
computing at extreme scale. 

 

• Understanding the physics 
governing MFE confinement 
scaling à one of highest priority 
research areas for success of 
next-step burning plasma 
experiments (e.g.,ITER) 

 
• GTC-Princeton (“GTC-P”) makes 

efficient use of DoE’s LCF’s to 
carry out ITER scale simulations 
with unprecedented resolution in 
phase-space & time. 

Accomplishments 
• Production-run simulations of turbulence dynamics governing confinement physics for large-scale MFE 

plasmas (e.g., ITER) have been successfully carried out for the first time with very high phase-space 
resolution and long temporal duration.  

• Co-design interdisciplinary research has now produced “GTC-P” – a modern HPC fusion energy 
science code that enables efficient use of multi-petascale capabilities on world-class CPU systems 
such as the IBM BG-Q  “Mira” @ ALCF & “Sequoia” @ LLNL to deliver important new scientific 
insights. 

 
 

Burning 
Plasmas/ITER 

Blue-Gene-Q 
“Mira” @ ALCF 
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    BG-Q Performance:  Weak Scaling Results 
 
• Mira @ ANL & Sequoia @ LLNL 
• C-Version of GTC-P Global GK PIC Code:  200 ppc resolution 
• Plasma system size increases from A to D with D being ITER 
  

Mira 
 

     Mira 
 

Mira 
 

Bei Wang (Princeton U.) & S. Ethier (PPPL) 

*NNSA’s Sequoia (16.3 PF)    
• excellent scaling to all 1,572,864 processor 
cores (capable of pushing over 130B particles) 
•  hybrid MPI+OpenMP in “GTC-P C” took full 
advantage of highly multi-threaded nodes and 
large scalable interconnect in BG-Q  
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K-Computer Performance:  Weak Scaling Results 
 
• Fujitsu-K Computer @ RIKEN AICS, Kobe, Japan 
• C-Version of GTC-P Global GK PIC Code:  200 ppc resolution 
• Plasma system size increases from A to D with D being ITER 
  
 

Takenori Shimosaka (RIKEN) & Bei Wang (Princeton U.) 
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Performance Evaluation Platforms 

Systems IBM BG/Q Cray XK7 
(Titan) 

Cray XC 30 (Piz 
Daint) 

NVIDIA 
Kepler 

Chips per node  1 2 1 1 

Cores per chip 16 8 8 14 (SMX’s) 

Interconnect Custom 5D 
Torus 

Gemini 3D Torus Aries Dragonfly - 

Core IBM A2 AMD Opteron 
6274 (Interlagos) 

Intel Xeon 
E5-2670 (SNBe) 

K20x 

Clock (GHz) 1.6 2.2 2.6 0.732 

Cores per chip 16 8 8 14 (SMX’s) 

Last-level Cache 32 MB 8 MB 20 MB 1.5 MB  

DP GFlop/s per chip 204.8 281.6 166.4 1311 

STREAM GB/s per 
node 

28 ? 38  171 



Weak Scaling of GTC-P (GPU-version)  
on Heterogenous (GPU/CPU) “Titan” and “Piz Daint” 

!

•  The number of particles per cell is 100 
•  GTC-P GPU obtains 1.7x speed up 
       Same code for all cases ! Performance difference  solely due to  

                                                     hardware/system software 
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Wall-clock time for pushing ion particles 100 time steps (s) 
Problem  B100  C100 D100 
Nodes 32 128 512 
2CPU 93.16 114.93 - 
2CPU+1MIC 79.24 88.97 - 
2CPU+2MIC 71.71 85.30 - 

Recent GTC-P weak scaling results from “Stampede”  

• B100 means “B-size problem with 100 ppc resolution;”  Number of toroidal domains set at  32 for 
all problems; 1 MPI/16 OpenMP threads on the host, 1 MPI/240 OpenMP threads on each MIC.  
• 512 nodes GTC-P simulation on “Stampede” targeted next. 



Current Ongoing Investigations on “Stampede” 

Goals:  
–  Improve intra-node communication between the host 

and the MICs to reduce overhead in the  MPI Scatter 
operation in GTC-P 

–  Improve inter-node communication between MIC’s (for 
particle shift operation) 



GTC-P Performance Studies on Heterogeneous (MIC/CPU) TH-2 System 
 

•  GTC-P ran successfully on up to 2048 nodes (host only) of TH-2 (Sept. 
2013) 

•  In preparation for continuation of this collaboration, we engaged NSF’s 
“Stampede” (MIC/CPU) System [Oct.’13 to present] in developing a 
MIC version of GTC-P (for symmetric mode operation).  

•  Stampede Results:  for 1MIC per node, obtain up to 1.46x speed up 
compared with CPU-only version of GTC-P 

•  “Lesson Learned” from running Intel MPI benchmark – via measuring 
latency & bandwidth of MPI communication for CPU to CPU; CPU to 
MIC; and MIC to MIC à Can optimize bandwidth between host and 
MIC’s by tuning GTC-P in accordance with optimal MPI communication 
pattern in “Stampede.”  
  è plan to use same optimization approach for TH-2 studies using 
possible TH-2 benchmark data 



Collaborative Studies with TH-2 

•  Measure MPI bandwidth between CPU to CPU, CPU to MIC and 
MIC to MIC on TH-2 using the Intel MPI benchmark  

•  Test GTC-P MIC performance (symmetric mode) on TH-2  
–  Weak scaling performance: starting from A100 problem size 

on 224 TH-2 nodes, and ultimately with D100 (ITER) problem 
size on 14336 nodes  

–  Deployment of 1MIC, 2MIC’s and 3MIC’s respectively for 
these weak scaling performance studies  

 



Comments on HPC Extreme Scale Challenges  
• Need more “demo-apps” that deploy innovative algorithms within modern codes that 

deliver new scientific insights on world-class systems – (e.g, BG/Q, K-Computer, 
Sequoia & Titan, Piz Daint, Stampede, TH-2) 

   
   Example from Fusion application domain: “Scientific Discovery in Fusion Plasma 

Turbulence Simulations @ Extreme Scale;” W. Tang, B. Wang, S. Ethier,  to be published 
(Sept. 2014) in special issue on leadership computing in Computing in Science & 
Engineering (CiSE) 

 
 •  Excellent performance scaling & “time-to-solution” have been achieved on top 

homogeneous architecture systems ! still  to be demonstrated on top heterogeneous 
GPU/CPU and GPU/MIC platforms 

 
•  Demonstration domain applications that deliver new science needed to help provide 

comparative performance studies on top supercomputing systems with “time to 
solution” as a viable metric. 

 

     " Need algorithmic advances enabled by Applied Mathematics – in an 
interdisciplinary environment together with Computer Science & Domain 
Applications 

              



GEOMETRIC HAMILTONIAN APPROACH TO SOLVING GENERALIZED VLASOV-
MAXWELL EQUATIONS 
Hamiltonian ! Lagrangian ! Action ! Variational Optimization ! Discretized 
Symplectic Orbits for Particle Motion 
 
I.  “Ultrahigh Performance 3-Dimensional Electromagnetic Relativistic Kinetic Plasma 
Simulation 
Kevin J. Bowers, et al., Phys. Plasmas 15, 055703 (2008) 
 
è Basic foundation for symplectic integration of particle orbits in electromagnetic fields 

without frequency ordering constraints  
è Foundational approach for present-day simulations of laser-plasma interactions on 

modern supercomputing systems 
è Limited applicabiity with respect to size of simulation region and geometric 

complexity 
 
II.  “Geometric Gyrokinetic Theory for Edge Plasmas” 
Hong Qin, et al., Phys. Plasmas  14, 056110 (2007) 
è Basic foundation for symplectic integration of particle orbits in electromagnetic low-

frequency plasma following GK ordering 
è Still outstanding challenge:  Address reformulation of non-local Poisson Equations 

structure for electromagnetic field solve 
 



 
 
 
 
 
 
• Locality:  Need to develop mathematical algorithms able to deal with  data locality 

 -- due to physical limitations, moving data between, and even within, modern 
microchips is more time-consuming than performing computations! 
      -- scientific codes often use data structures that are easy to implement quickly but 
         limit flexibility and scalability in the long run 

  
• Advanced Architectures:   Need to deploy innovative algorithms within modern science codes 
on low memory per node architectures – (e.g, BG/Q, Fujitsu-K, Titan, & Tianhe-2) 

 -- multi-threading within nodes, maximizing locality while minimizing communications 
    ! Substantive results achieved with GTC-P PIC code on IBM  BG/Q (homogeneous 
architecture); good progress on hybrid (heterogeneous) CPU-GPU & CPU-MIC systems 

  
• Advanced Algorithms:   Need to develop Geometric Hamiltonian approaches most capable of 
ensuring locality of calculations and symplectic features 
      -- Local EM field solve needed to complement existing local particle dynamics solve for 
Gyrokinetics 
         (Meanwhile, focus on deployment of fastest solvers (FMM, etc.) 

Summary:  Challenges in Moving toward Exascale  



US/EU Statistical Disruption Studies on JET 
W. M. Tang (Princeton University/PPPL)  

 
  

•  Situation Analysis: 
          –    The most critical of all problems facing magnetic fusion energy development is the need to avoid/ 
                mitigate large-scale major disruptions in tokamaks 
          --   The most advanced conventional “hypothesis-driven” MHD codes are currently still far away 
              from producing the timely predictive capability needed for disruption avoidance in JET 
             (Joint  European Torus)–only experiment that achieved near “break-even” fusion energy production. 
 
•  Proposed “Big Data” Project:  Use of of large- data-driven statistical predictions for the occurrence of 

disruptions in JET 
 

–  Based on new statistical machine-learning techniques developed in the Computer Science/Applied 
Math community in the U.S. 

–  Use powerful hardware at the ORNL Leadership Class Facility for needed large-scale “data-
mining” analysis of JET data 

 
•  Current Status:     

      à JET has expressed serious willingness to provide access to their large disruption-relevant  
       multi-dimensional data base that has yet to be analyzed. 
 " Excellent opportunity for G8 NuFuSE Project to possibly leverage this important emerging “Big-
Data Discovery” project on a problem of great importance for Fusion Energy futures. 
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