
||Matthias Troyer

High Performance Quantum Computing

Matthias Troyer

1

||Matthias Troyer 2

Beyond exascale: quantum devices

Quantum random numbers
perfect randomness

Quantum encryption

secure communication

Analog quantum simulators
solve quantum models

Quantum annealer

solve hard optimization problems?

Quantum computers?

Q

solve quantum models (R. Feynman)

factor integers (P. Shor)

break RSA encryption

solve linear equations (A. Harrow et al)

...

||Matthias Troyer ||Matthias Troyer ||Matthias Troyer

Quantum mechanics can give true  
and perfect random numbers

3

Quantum random numbers

0 1photo detectors

photon source

semi-transparent  
mirror

0 1. Photon source emits a photon

2. Photon hits semi-transparent mirror

3. Photon follows both paths

4. The photo detectors see the photon only 
 in one place: random selection

5. Record one random bit

||Matthias Troyer

Exchange a secret key to encrypt a message using entangled photons

No eavesdropper can listen without being detected

except for the quantum hacker Vadim Makarov (Waterloo)

4

Quantum cryptography

Quantum hacking lab

||Matthias Troyer

Solves NP-complete spin glass problem with up to 512 variables

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

1

6

D-Wave Two quantum annealer

H = Jij
ij
∑ sis j + hi

i
∑ si + const. with si = ±1

Can be built with imperfect qubits
Suffers form calibration problems like other analog devices
Unknown if this technology can ever scale better than classical devices

||Matthias Troyer 7

What about quantum computers ?

Q
Prerelease	
�
   0.1	
�
   -­	
�
   not	
�
   for	
�
   distribution

?

||Matthias Troyer

▪ Classical bits can only be either 0 or 1

▪ Quantum bits can have both values at once, in arbitrary superpositions

▪ need two complex or three real numbers to describe the state

▪ but when measuring (looking) I only ever get 1 bit

8

Classical versus quantum bits

0 with probability α 2

1 with probability β 2

ψ =α 0 + β 1 α 2 + β 2 = 1

α = cos θ
2

⎛
⎝⎜

⎞
⎠⎟ β = eiφ sin θ

2
⎛
⎝⎜

⎞
⎠⎟ψ =

α
β

⎛

⎝
⎜

⎞

⎠
⎟

0

1

||Matthias Troyer

▪ The state of an N qubit register
▪ needs 2N complex numbers to be represented classically
▪ but when measured only gives N bit of information

▪ Advantages and limitations of quantum computers
▪ Exponential intrinsic parallelism: operate on 2N inputs at once
▪ But very limited readout of only N bits

▪ No-cloning theorem: a quantum register cannot be copied

9

Information content of a quantum register

C 0 → 0 0
C 1 → 1 1

Try to build a
cloner for 0 and 1

C α 0 + β 1()→α 0 0 + β 1 1

≠ α 0 + β 1() α 0 + β 1()

Linearity of quantum mechanics means it
will not clone an arbitrary state

||Matthias Troyer

▪ In classical computing the NAND gate is universal

▪ In quantum computing we need three gates

▪ Hadamard gate (flips x and z)

▪ T gate (applies phase to 1 state)

▪ CNOT gate (conditionally flips)

▪ This choice is not unique and having more gates can make a
device more efficient

10

Quantum gates

or N spin-orbitals for fermions, which would require exponential memory on classical
computers – but only N bits of information can ever be read out. One thus has to be
smart in using these quantum bits.

8.1.2 Quantum gates

Since quantum mechanical time evolution is unitary (apart from measurements that
collapse the wave function), we can only perform unitary operations on quantum bits
and measurements. Just as for classical computers it is convenient to build a quantum
circuit from a set of quantum gates that act on a limited set of qubits.

Classical circuits are typically built from a set of gates that include OR, AND, NOT,
XOR and more. However, in principle only the NAND (not-AND) gate is necessary
since all other gates can be built from it. The NAND gate is thus called universal:
any classical computation can be done purely with NAND gates. It still makes sense
to consider more types of gates when building circuits, to make the design of circuits
easier.

For quantum circuits one similarly often uses a larger set of gates than is strictly
necessary. In the following I will discuss a set of typically used one and two qubit gates
and will then discuss which ones are strictly necessary.

Single qubit gates

Pauli-X (NOT) X

(

0 1
1 0

)

Pauli-Y Y

(

0 −i
i 0

)

Pauli-Z Z

(

1 0
0 −1

)

Hadamard gate H
1√
2

(

1 1
1 −1

)

Phase gate S

(

1 0
0 i

)

T gate or π/8 gate T

(

1 0
0 eiπ/4

)

Rz(θ) gate Rz(θ)

(

e−iθ/2 0
0 eiθ/2

)

A few remarks may be useful. The X gate is the quantum analog of a classical NOT
gate. The Hadamard gate (H) squares to the identity and is essentially a ninety degree
rotation around the y axis, rotating a state aligned with z to x. The T gate is also
called π/8 gate since it can – up to an irrelevant global phase – be written as

T = eiπ/8
(

e−iπ/8 0
0 eiπ/8

)

. (8.4)

The Rz gate performs a rotation around the z axis in spin space. Similar rotations
around the x and y axis are performed by the Rx and Ry gates.

78

α 0 + β 1 →α 0 + eiπ /4β 1

Two-qubit gates

A set of common two-qubit gates are controlled gates, consisting of a control qubit and
a target qubit. The controlled version CU of a single qubit gate U (any of the list
above) performs the single qubit operation U on the target qubit only if the control
qubit is set to 1.

The quantum circuit for such a gate is:

•

U

Its matrix representation in a basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} is
⎛

⎜

⎜

⎝

1 0
0 1

0 0
0 0

0 0
0 0

U

⎞

⎟

⎟

⎠

. (8.5)

The most important two-qubit gate is the controlled-NOT-gate (CNOT), which is
the same as a controlled-X gate. It is typically drawn as

•

The matrix representation is
⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟

⎟

⎠

.

Other two-qubit gates can be built from single qubit gates and the CNOT gate. For
example, the swap gate which swaps the states of two qubits can be built from three
CNOT gates as

• • ×

≡

• ×

Universal gate sets

Of the above gates just the Hadamard, π/8 and CNOT gates are sufficient to imple-
ment any quantum circuit. All the other gates, including arbitrary rotations, can be
built from these gates with arbitrary precision ϵ with a small number of gates that
scales as poly(log(1/ϵ) using. A standard algorithm for these approximations is the
Solovay-Kitaev algorithm This is similar to the NAND gate being universal for classical
computing.

79

x y → x x⊕ y

0 → 1
2
0 + 1() 1 → 1

2
0 − 1()

or N spin-orbitals for fermions, which would require exponential memory on classical
computers – but only N bits of information can ever be read out. One thus has to be
smart in using these quantum bits.

8.1.2 Quantum gates

Since quantum mechanical time evolution is unitary (apart from measurements that
collapse the wave function), we can only perform unitary operations on quantum bits
and measurements. Just as for classical computers it is convenient to build a quantum
circuit from a set of quantum gates that act on a limited set of qubits.

Classical circuits are typically built from a set of gates that include OR, AND, NOT,
XOR and more. However, in principle only the NAND (not-AND) gate is necessary
since all other gates can be built from it. The NAND gate is thus called universal:
any classical computation can be done purely with NAND gates. It still makes sense
to consider more types of gates when building circuits, to make the design of circuits
easier.

For quantum circuits one similarly often uses a larger set of gates than is strictly
necessary. In the following I will discuss a set of typically used one and two qubit gates
and will then discuss which ones are strictly necessary.

Single qubit gates

Pauli-X (NOT) X

(

0 1
1 0

)

Pauli-Y Y

(

0 −i
i 0

)

Pauli-Z Z

(

1 0
0 −1

)

Hadamard gate H
1√
2

(

1 1
1 −1

)

Phase gate S

(

1 0
0 i

)

T gate or π/8 gate T

(

1 0
0 eiπ/4

)

Rz(θ) gate Rz(θ)

(

e−iθ/2 0
0 eiθ/2

)

A few remarks may be useful. The X gate is the quantum analog of a classical NOT
gate. The Hadamard gate (H) squares to the identity and is essentially a ninety degree
rotation around the y axis, rotating a state aligned with z to x. The T gate is also
called π/8 gate since it can – up to an irrelevant global phase – be written as

T = eiπ/8
(

e−iπ/8 0
0 eiπ/8

)

. (8.4)

The Rz gate performs a rotation around the z axis in spin space. Similar rotations
around the x and y axis are performed by the Rx and Ry gates.

78

or N spin-orbitals for fermions, which would require exponential memory on classical
computers – but only N bits of information can ever be read out. One thus has to be
smart in using these quantum bits.

8.1.2 Quantum gates

Since quantum mechanical time evolution is unitary (apart from measurements that
collapse the wave function), we can only perform unitary operations on quantum bits
and measurements. Just as for classical computers it is convenient to build a quantum
circuit from a set of quantum gates that act on a limited set of qubits.

Classical circuits are typically built from a set of gates that include OR, AND, NOT,
XOR and more. However, in principle only the NAND (not-AND) gate is necessary
since all other gates can be built from it. The NAND gate is thus called universal:
any classical computation can be done purely with NAND gates. It still makes sense
to consider more types of gates when building circuits, to make the design of circuits
easier.

For quantum circuits one similarly often uses a larger set of gates than is strictly
necessary. In the following I will discuss a set of typically used one and two qubit gates
and will then discuss which ones are strictly necessary.

Single qubit gates

Pauli-X (NOT) X

(

0 1
1 0

)

Pauli-Y Y

(

0 −i
i 0

)

Pauli-Z Z

(

1 0
0 −1

)

Hadamard gate H
1√
2

(

1 1
1 −1

)

Phase gate S

(

1 0
0 i

)

T gate or π/8 gate T

(

1 0
0 eiπ/4

)

Rz(θ) gate Rz(θ)

(

e−iθ/2 0
0 eiθ/2

)

A few remarks may be useful. The X gate is the quantum analog of a classical NOT
gate. The Hadamard gate (H) squares to the identity and is essentially a ninety degree
rotation around the y axis, rotating a state aligned with z to x. The T gate is also
called π/8 gate since it can – up to an irrelevant global phase – be written as

T = eiπ/8
(

e−iπ/8 0
0 eiπ/8

)

. (8.4)

The Rz gate performs a rotation around the z axis in spin space. Similar rotations
around the x and y axis are performed by the Rx and Ry gates.

78

||Matthias Troyer

▪ Check whether a binary function is constant or not

▪ Classically two function calls are needed: f(0) = f(1)?

▪ Quantum mechanically only one function call by applying the
function to both arguments at once

▪ Smart manipulation needed to read out the answer as one bit

11

The Deutsch algorithm: simplest quantum speedup

f :{0,1}→ {0,1}

8.1.4 The Deutsch and Deutsch-Jozsa algorithms

The Deutsch algorithm and its generalization, the Deutsch-Jozsa algorithm are the
simplest quantum algorithms that show an advantage over classical algorithms, even
though the problem they solve is somehow artificial. You are given a binary function
f (function values are either 0 or 1) and know that either the function is constant, or
it is balanced, i.e. it is 0 for exactly half the inputs and 1 for the other half. The
Deutsch and Deutsch-Jozsa algorithm can decide between the two cases with exactly
one function call.3

The Deutsch algorithm

The Deutsch algorithm asks the question to decide whether a binary function of one
input variable f : {0, 1} → {0, 1} is balanced or constant. Classically one has to
obviously make two function calls and determine f(0) and f(1) to decide since we need
to check whether f(0) = f(1). Equivalently we can calculate f(0) ⊕ f(1), where ⊕
denotes binary addition modulo 2. If this value is zero, then f is constant.

If the function f is given as a quantum algorithm Uf that takes an input state |x⟩|y⟩
to a state |x⟩|f(x) ⊕ y⟩ then we can determine whether the function is constant in a
single function call with the following algorithm:

|0⟩ H
Uf

H

|1⟩ H

We thus start in a state |0⟩|1⟩ and apply a Hadamard gate to each qubit, giving the
state 1

2(|0⟩+ |1⟩)(|0⟩ − |1⟩). Applying the function f we obtain

(−1)f(0)1
2

(

|0⟩+ (−1)f(0)⊕f(1)|1⟩
)

(|0⟩ − |1⟩). (8.7)

Since the state of the second qubit is constant and the global phase irrelevant we drop
them both and focus on just the first qubit’s state 1√

2
(|0⟩+ (−1)f(0)⊕f(1)|1⟩). Applying

another Hadamard gate we end up with the final quantum state

1

2
((1 + (−1)f(0)⊕f(1))|0⟩+ (1− (−1)f(0)⊕f(1))|1⟩) (8.8)

We see that in a final measurement we get the state |0⟩ with certainty if f(0) = f(1)
and the state |1⟩ otherwise. A single function call and single measurement can thus tell
if the function is constant or nor.

The Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm generalizes the Deutsch algorithm to functions defined
not just over two values but 2N values, encoded in N bits. The question is once more
whether the function f : {0, 1}N → {0, 1} is balanced or constant. In a deterministic
classical algorithm this requires at least 2N−1+1 function calls. The quantum algorithm

3The discussion here partially follows the presentation on WIkipedia

81

1
2
1+ (−1) f (0)⊕ f (1)() 0 + 1− (−1) f (0)⊕ f (1)() 1⎡⎣ ⎤⎦

U f x y → x f (x)⊕ y

U f α 0 + β 1() 0 →α 0 f (0) + β 1 f (1)

||Matthias Troyer 12

!
!
 Surprisingly, this question has not been seriously asked until 2012
!
 It needs to be an important problem (killer-app) that we cannot solve  

on an exascale machine
!
 Compare to state-of-the-art on beyond-exascale hardware  

and not an unoptimized code on a single CPU core

What would we use it for?

||Matthias Troyer

▪ Search an unsorted database of N entries in √N time
▪ Rare case of provable quantum speedup given an oracle

▪ However, the oracle needs to be implemented!

▪ N-entry database or arbitrary stored data  
needs at least O(N) hardware

▪ Can perform the same search classically in  
log(N) time with special purpose hardware

▪ Grover search is only useful if the database  
need not be stored but can be calculated on the fly!

13

Grover search

||Matthias Troyer

▪ Factoring is a hard problem classically: O(exp(N1/3)) for N bits

▪ Shor’s algorithm is polynomial time on a quantum computer
▪ O(N3) using minimal number of 2N+3 qubits
▪ O(N2) using O(N) qubits
▪ O(N) using O(N2) qubits

▪ Shor’s algorithm suddenly made quantum computing interesting
14

Shor’s algorithm for factoring

53693968364269119460795054153326005186041818389302311662023173188470613584169777981247775554355964649
04452615804209177029240538156141035272554197625377862483029051809615050127043414927261020411423649694
63096709107717143027979502211512024167962284944780565098736835024782968305430921627667450973510563924

02989775917832050621619158848593319454766098482875128834780988979751083723214381986678381350567167 !
=

43636376259314981677010612529720589301303706515881099466219525234349036065726516132873421237667900245
9135372537443549282380180405548453067960658656053548608342707327969894210413710440109013191728001673!

* !
12304864190643502624350075219901117888161765815866834760391595323095097926967071762530052007668467350
6058795416957989730803763009700969113102979143329462235916722607486848670728527914505738619291595079

||Matthias Troyer

▪ Shor’s algorithm can be used to crack RSA encryption
▪ assuming 10 ns gate time and minimal number of 2N+3 qubits
▪ much faster (seconds) when using more qubits

▪ But use of quantum computers to crack RSA is limited since we can
anytime switch to post-quantum encryption
▪ quantum cryptography
▪ lattice based cryptography

15

Shor’s algorithm and encryption

RSA cracked in CPU years Shor

453 bits 1999 10 1 hour

768 bits 2009 2000 5 hours

1024 bits 1000000 10 hours

||Matthias Troyer

▪ Solve linear systems in log(N) time if
▪ matrix can be computed efficiently and  

need not be stored
▪ only log (N) bits of the answer are needed
▪ problem is well conditioned

▪ First application: electromagnetic wave scattering
▪ Clader, Jacobs, Sprouse (2013)
▪ crossover compared to classical  

supercomputers is beyond  
1000 years wallclock time

16

Solving linear systems of equations (Harrow et al)

15

lx

ly

Incident Field

Scattered Field

FIG. 9. Two-dimensional finite element mesh with square finite elements. The scattering region is shown in grey, and can be
any arbitrary design. The incident field interacts with the metallic scatterer and scatters o↵ into all directions.

and less dense when lower accuracy is su�cient. However one of the key constraints with the QLSA is that the matrix
elements must be e�ciently computable. This restricts one to semi-regular or functionally defined meshes.

As a simple toy–problem example, we will model the scattering of a plane wave o↵ an arbitrary 2D metallic
scattering region with a uniform rectangular mesh, as shown in Fig. 9. Following standard FEM techniques[18], we
write the free-space Maxwell’s equation as a functional

F (E) =

Z
V

⇥
(r⇥E) · (r⇥E)� k2E ·E

⇤
dV + ik

Z
S

Et ·EtdS, (62)

where

E(x, y) = E
0

p̂e�ik·r(x,y) (63)

is the vector electromagnetic field propagating in direction k̂ = k/k = cos ✓x̂+ sin ✓ŷ, at position r(x, y) = xx̂+ yŷ,
with magnitude E

0

, wavenumber k, and polarization p̂ = r̂ ⇥ ẑ. The label Et indicates the component tangential to
the surface S, V is the volume of the computational region, and S is the outer surface of the computational region.
By taking �F = 0, the volume term gives Maxwell’s equation for the electric field, while the surface integral is an
artificial absorbing term used to prevent reflections o↵ the artificial computational boundary. On the inner metallic
scattering surface the boundary condition

n̂⇥E = �n̂⇥Ei (64)

where Ei is the incident field, and n̂ is the unit vector normal to the surface is applied.
Within an element labelled e the electric field can be expanded in terms of edge basis vectors [19],

Ee =
4X

i=1

N e
i e

e
i (65)

where eei is the magnitude of the electric field along edge i and

N e
1

=
1

ly

✓
yec +

ly
2
� y

◆
x̂ N e

2

=
1

ly

✓
y � yec +

ly
2

◆
x̂ (66)

N e
3

=
1

lx

✓
xe
c +

lx
2
� x

◆
ŷ N e

3

=
1

lx

✓
x� xe

c +
lx
2

◆
x̂,

||Matthias Troyer

Domain area Code name Institution # of cores Performance Notes

Materials DCA++ ORNL 213,120 1.9 PF 2008 Gordon Bell
Prize Winner

Materials WL-LSMS ORNL/ETH 223,232 1.8 PF 2009 Gordon Bell
Prize Winner

Chemistry NWChem PNNL/ORNL 224,196 1.4 PF 2008 Gordon Bell
Prize Finalist

Materials DRC ETH/UTK 186,624 1.3 PF 2010 Gordon Bell
Prize Hon. Mention

Nanoscience OMEN Duke 222,720 > 1 PF 2010 Gordon Bell
Prize Finalist

Biomedical MoBo GaTech 196,608 780 TF 2010 Gordon Bell
Prize Winner

Chemistry MADNESS UT/ORNL 140,000 550 TF

Materials LS3DF LBL 147,456 442 TF 2008 Gordon Bell
Prize Winner

Seismology SPECFEM3D USA (multiple) 149,784 165 TF 2008 Gordon Bell
Prize Finalist

Combustion S3D SNL 147,456 83 TF

Weather WRF USA (multiple) 150,000 50 TF

1.9 PF

1.8 PF

Thursday, July 21, 2011 DFT and Beyond: Hands-on Tutorial Workshop – Berlin, Germany

Applications running at scale on Jaguar @ ORNL (Spring 2011)

Source: T. Schulthess 17

Applications running at scale on Jaguar @ ORNL

||Matthias Troyer

▪ A killer-app for quantum computing is solving quantum problems

▪ Design a room-temperature superconductor

▪ Develop a catalyst for carbon sequestration

▪ Develop better catalysts for nitrogen fixation (fertilizer)

▪ These problem need better accuracy than we get by using
approximate classical algorithms

▪ exponentially hard classically
▪ polynomial complexity on quantum hardware

18

Solving quantum chemistry on a quantum computer

||Matthias Troyer

▪ Assume the fastest imaginable quantum computer and consider smallest
problem we cannot solve classically: N=50 orbitals, O(100) qubits

19

Quantum algorithms for quantum chemistry

Scaling Run time for N=50

State of 12/2013 N10 100 000 years

1/2014 pipelining and
optimisations N9 3 years

6/2014  
faster convergence N5.5 1 hour

parallel with
with N1.6 seconds?

▪ Quantum information theorists declare victory proving the existence of 
polynomial time algorithms

▪ We need HPQC specialists to develop better algorithms!

||Matthias Troyer 20

!
!
!
 many proposals but few are scalable …

State of the art of hardware

||Matthias Troyer

▪ Coupling to the environment easily destroys the quantum superposition
▪ Qubits need to be designed to be well isolated from the environment

Physical realizations and decoherence

ψ =α 0 + β 1

21

Perturbations
from the environment

destroy the parallel evolution of the computation

Parallel evolution
providing the

quantum speedup.

i

f

||Matthias Troyer

▪ Use the motional states of well isolated ions to encode a qubit

▪ up to 14 qubits
▪ coherent for several seconds
▪ about 100 gate operations
▪ 10 µs gate times

!
▪ Advantages and disadvantages
▪ Well isolated from environment
▪ Relatively slow
▪ Hard to scale beyond O(20) qubits

22

The best qubits: ion traps (universities)

Image: group of R. Blatt, Innsbruck

||Matthias Troyer

▪ Use superconducting current loops to encode a qubit

▪ State of the art
▪ 5 qubits
▪ 100 µs coherence times
▪ 10 ns gate times
▪ about 100 gate operations

▪ Advantages and disadvantages
▪ scalable
▪ fast
▪ can be built in semiconductor foundries
▪ lots of decoherence in a solid state device

23

Superconducting qubits (IBM and universities)

||Matthias Troyer

▪ Example: Shor’s code protects a against sign or bit flip errors
▪ Needs nine qubits and substantially increases number of gates

▪ Codes need to be recursively iterated to protect against multiple errors

▪ Quantum error correction overhead is at least 1000x more qubits and
gates for any reasonable computation

24

Quantum error correction

||Matthias Troyer

▪ Encode the qubit in a topological property of a quantum state

▪ Intrinsic protection due to topology
▪ No local noise can decohere the qubit
▪ No expensive error correction needed
▪ Operations done by “braiding” isolated particles

▪ Most promising:  
Majorana particles

▪ may exist at ends of  
superconducting nanowires

▪ hope to confirm their  
existence within 5 years

25

Topological qubits (Microsoft and universities)

Ettore

Majorana

||Matthias Troyer 26

(Optimistic) road map for quantum computers

§ First quantum devices exist, but computational power is limited
§ quantum random numbers
§ quantum encryption
§ quantum simulators
§ quantum optimizers

§ General-purpose quantum computers will always remain 
special purpose accelerators for selected tasks

§ My optimistic road map
§ Today: 14 qubits allowing up to 100 operations
§ 2020: a long-time stable quantum bit with quantum error correction
§ 2025: matching classical CPUs on selected applications
§ 2030: outperforming any hypothetical classical computer on selected applications

§ Huge potential for classical spin-off technology (e.g. superconducting)

26

||Matthias Troyer

▪ Identifying killer-apps for quantum computing is challenging
▪ the problem has to be hard enough that it cannot be solved on a PC
▪ the problem has to be amenable to quantum acceleration
▪ the crossover scale has to be short enough to make it useful
▪ CMOS technology is a tough competitor
▪ we need to consider special purpose classical devices as competitors

▪ Potential applications
▪ factoring and code breaking (limited use)
▪ quantum chemistry and material simulations (challenging but enormous potential)
▪ solving linear systems (can’t we solve them well enough already?)
▪ machine learning???

▪ It is time to move quantum computing research 
from theoretical computer science to high performance computing

27

Quantum computing applications

