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Motivation for this Talk

– Previous talks

– Abstract submission

– Grounded right track
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Motivation for this Talk
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Your Supercomputer 25 Years Ago
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Cray XC30 Software Stack
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Motivation for this Talk

• Building Web Pages

• Recent PhD talk

• Turtles all the way down

•HW and SW getting more complex
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mOS
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• Supposition: analogous to dark 
silicon, let the “free” cycles do 
the work
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Before Proceeding

• Not for everyone

– Consider cut through high performance

•Good for new applications

– Biological for example

• Previous talks’ theme:

– The real challenge in moving software to extreme scale, and 
therefore the real solution, will be figuring out how to 
incorporate and support existing computation paradigms in 
an evolutionary model while simultaneously supporting new 
revolutionary paradigms.
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Maybe not so far fetched, done this a bit 
already

• Compilers

• Demand paging

– No

– Yes
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Peering into the Future with Hard Work
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Exa

Peta

Zeta

PEZ(Y)
Exascale is only a point 
on the continuum



mOS:  multiple Operating System
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• Run multiple OSes on node simultaneously

• Linux API with LWK performance

• Kernel is configured for the application

– Provides compatibility and performance/scalability/reliability
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Runtimes and Libraries
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Effort Pyramid
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•Over commit

– Adaptive, asynchronous,
load balance, fault tolerance

• Building block approach



Global OS
Resilience
Dynamic

• Resolve as many faults as possible

– Extra nodes swapped in automatically (proactively if possible)

– NVRAM accessible independent of node

– Automatic checkpoint of DRAM to NVRAM

– For unresolvable provide fault information to application
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Compilers / Fine-Grained Parallelism

• There is more compute capability at lower power that 
can be unlocked if we figure out how to translate 
programing models into execution threads that can 
utilize it

• Current approaches to unlocking this potential have 
challenges

•Need a joint effort between compilers between what 
is possible and what would be needed from hardware 
to achieve
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Data Management for Big Data

• Smooth and automatic representation between
– Application data structure in memory

– Representation and access to NVRAM

– Storage to disk

•Moving compute to data

• Application makes system call

– make_permanent(*data), make_durable(*data)
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main()

A[100][100][100];

graph_node {
int value;
edge e1;

} RAM nvram

main()
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• Leverage PEZ(Y) cycles to 
provide higher level and more 
productive abstractions to 
applications

• You’re building tomorrow’s
turtles
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