Make It So !

A Software Paradigm for PEZ(Y)
Computing

Dr. Robert W. Wisniewski
Chief Software Architect Extreme Scale Computing
Senior Principal Engineer, Intel Corporation

July 9, 2014

Copyright © 2014 Intel Corporation. All rights reserved.

Legal Disclaimer

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any
difference in system hardware or software design or configuration may affect actual performance.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2014, Intel Corporation. All rights reserved.

Motivation for this Talk

— Previous talks
— Abstract submission
— Grounded right track

Motivation for this Talk

Your Supercomputer 25 Years Ago

Application

compiler

kernel

hardware

Cray XC30 Software Stack SN

Applications

Open/3 party Compilers, Libraries,
MPI

Job Schedulers (SLURM, PBS,
Resource Management
Moab,)

Network Management
High Speed Network (HSN)

Cray Linux Environment (CLE) Lustre

Cray Compilers, Libraries, MPI

Admin Interface, Config Mgmt
Power Management

Linux

Events/State/Status Message Bus

RAS components & Diagnostics

Hardware Abstraction Layer (HAL)

Cray Open and 3™ Party
Software Software

Current Blue Gene

| 'O and Compute Nodes | | Service Node/Front End Nodes |
S ; ; i HPC
Open Toolchain Runtime | | XLRwwme | | ESSL | T 7

% E Ferfidon BG Nay Teolkit CSA

= % | AR | Brides APT o | Loadleveler

: JAEr Global Arrays Charm+~+ MPILTG g Schedulers,

debugper:s
DOMF (BG CIoD totalviswd Hizh Level Control System (MMCS)
E Mezzage Srack) E Fartirioning, Job management and DE2?
2l A Linux kernel GPFS B HIGHIIOTINE,
E,“ RAS, ddministrator imterface
Meszaging SPI= Nede 5PI=

@ Commos Mode o Low Level Control System

" Brer—fods m Power On' N Hardware probe,

E : Hardwars mit RA5 E Hardwars init. Paralle]l monitoring

= Dhazs Bootloadar e T = Parallel boot, Mailbox

o — [

:
Service card
[Cormpute nodes |) [tz ecadl

g [Computs nodes | g SN FENs
[] Mew open zource reference implementation licenzed under CPL.
[MNew open source commumty under CPL license. Active IBM participation.
[| E=xisting open source communities under various licenses. BG code will be contributed and/'or new sub-community started .
[| Clesed. No source provided. Not buildable.
[] Clozed. Buildable source available

BGIF Software Overview @ 2008 IBM Corporation

i

@Ld

Motivation for this Talk

e Building Web Pages
e Recent PhD talk

e Turtles all the way down

e HW and SW getting more complex

mOS

Make It So

e Supposition: analogous to dark
silicon, let the “free” cycles do
the work

Before Proceeding

e Not for everyone
— Consider cut through high performance

e Good for new applications
— Biological for example

e Previous talks’ theme:

— The real challenge in moving software to extreme scale, and
therefore the real solution, will be figuring out how to
incorporate and support existing computation paradigms in
an evolutionary model while simultaneously supporting new
revolutionary paradigms.

Maybe not so far fetched, done this a bit
already

e Compilers

e Demand paging
- No
- Yes

Peering into the Future with Hard Work

PEZ(Y)
Exascale is only a point Zeta
on the continuum

Exa

MOS: multiple Operating System

App Application

Assist I/O daemon

tools glibc/shim

hartitioned =————————p
Platform Software

e Run multiple OSes on node simultaneously
e Linux API with LWK performance

e Kernel is configured for the application
— Provides compatibility and performance/scalability/reliability

Runtimes and Libraries

data control
in in
HW N
LL SW task i

(1+)

daé co\ntrol
/{untime/Lib (10+x
/ Application (100+) \

Effort Pyramid
e Over commit X

— Adaptive, asynchronous, core core core
load balance, fault tolerance

e Building block approach

Global OS
Resilience
Dynamic

network

e Resolve as many faults as possible

— Extra nodes swapped in automatically (proactively if possible)
— NVRAM accessible independent of node
— Automatic checkpoint of DRAM to NVRAM

— For unresolvable provide fault information to application

Compilers / Fine-Grained Parallelism

e There is more compute capability at lower power that
can be unlocked if we figure out how to translate
programing models into execution threads that can
utilize it

e Current approaches to unlocking this potential have
challenges

e Need a joint effort between compilers between what
iIs possible and what would be needed from hardware
to achieve

Data Management for Big Data

main()
_— main()

A[100][100][100];

graph_node { ——__

int value;

edgeel; —
} RAM Nnviram

e Smooth and automatic representation between

— Application data structure in memory
— Representation and access to NVRAM
— Storage to disk

e Moving compute to data

e Application makes system call
- make_permanent(*data), make_durable(*data)

Make It So

e Leverage PEZ(Y) cycles to
provide higher level and more
productive abstractions to
applications

e You're building tomorrow’s
turtles _—

