
Make It So !

A Software Paradigm for PEZ(Y)
Computing

Dr. Robert W. Wisniewski

Chief Software Architect Extreme Scale Computing

Senior Principal Engineer, Intel Corporation

July 9, 2014

Copyright © 2014 Intel Corporation. All rights reserved.

1

Legal Disclaimer

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any
difference in system hardware or software design or configuration may affect actual performance.

Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel, Intel Xeon, Intel Core microarchitecture, and the Intel logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2014, Intel Corporation. All rights reserved.

Motivation for this Talk

– Previous talks

– Abstract submission

– Grounded right track

3

Motivation for this Talk

4

Your Supercomputer 25 Years Ago

hardware

kernel

compiler

Application

C O M P U T E | S T O R E | A N A L Y Z E

Cray XC30 Software Stack

5

6

Motivation for this Talk

• Building Web Pages

• Recent PhD talk

• Turtles all the way down

•HW and SW getting more complex

7

mOS

1701D

• Supposition: analogous to dark
silicon, let the “free” cycles do
the work

8

Make It So

Before Proceeding

• Not for everyone

– Consider cut through high performance

•Good for new applications

– Biological for example

• Previous talks’ theme:

– The real challenge in moving software to extreme scale, and
therefore the real solution, will be figuring out how to
incorporate and support existing computation paradigms in
an evolutionary model while simultaneously supporting new
revolutionary paradigms.

9

Maybe not so far fetched, done this a bit
already

• Compilers

• Demand paging

– No

– Yes

10

Peering into the Future with Hard Work

11

12

Exa

Peta

Zeta

PEZ(Y)
Exascale is only a point
on the continuum

mOS: multiple Operating System

13

• Run multiple OSes on node simultaneously

• Linux API with LWK performance

• Kernel is configured for the application

– Provides compatibility and performance/scalability/reliability

Compute
Node

Linux

I/O daemon

OS
Node

N:1

LWK
OSLinux

Application

HPC System

Platform Software

partitioned

glibc/shim

App
Assist

tools

Runtimes and Libraries

14

Effort Pyramid

Application (100+)

Runtime/Lib (10+)

HW
LL SW
(1+)

task i

data
in

control
in

data control

task n
task n

task n

core core core core

task n

runtime
•Over commit

– Adaptive, asynchronous,
load balance, fault tolerance

• Building block approach

Global OS
Resilience
Dynamic

• Resolve as many faults as possible

– Extra nodes swapped in automatically (proactively if possible)

– NVRAM accessible independent of node

– Automatic checkpoint of DRAM to NVRAM

– For unresolvable provide fault information to application

15

CN CN

CN CN

CN CN

CN CN

CN CN

OSN

OSN

SMC

H
P
C

n
e
tw

o
rk

nvram

CN

Compilers / Fine-Grained Parallelism

• There is more compute capability at lower power that
can be unlocked if we figure out how to translate
programing models into execution threads that can
utilize it

• Current approaches to unlocking this potential have
challenges

•Need a joint effort between compilers between what
is possible and what would be needed from hardware
to achieve

16

Data Management for Big Data

• Smooth and automatic representation between
– Application data structure in memory

– Representation and access to NVRAM

– Storage to disk

•Moving compute to data

• Application makes system call

– make_permanent(*data), make_durable(*data)

17

main()

A[100][100][100];

graph_node {
int value;
edge e1;

} RAM nvram

main()

1701D

• Leverage PEZ(Y) cycles to
provide higher level and more
productive abstractions to
applications

• You’re building tomorrow’s
turtles

18

Make It So

