
Roberto Ansaloni
roberto@cray.com

International Research Workshop
Advanced High Performance Computing Systems

Cetraro, June 27 - 29, 2011

 Extrapolating current systems based on multi-core X86
CPUs will lead to unacceptably high power costs

 Multi-core CPUs are optimized for making single
threads run fast, rather than many threads run power
efficiently

 Heterogeneous nodes combining traditional multi-core
CPUs with vector/SIMD accelerators hold promise to
improve the power efficiency of HPC systems

 Another approach consists of supplying many more
low-power cores on the node

 Both solutions present extreme programmability
challenges !

2International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 NVIDIA FermiTM has made GPUs feasible for HPC
 Robust error protection and strong DP FP, plus

programming enhancements

 Expect GPUs to make continued and significant
inroads into HPC
 Compelling technical reasons + high volume market

 We are interested in large scale GPU configurations
 Not really interested in single GPU results

 Scaling GPU computing introduces new complexity

3International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Hybrid architecture: heterogeneous nodes combining
CPU and GPU
 CPU: AMD Opteron 6200 (Interlagos), 16 cores per socket

 GPU: Nvidia Tesla X2090 (Fermi+)

 Gemini Interconnect

 Unified X86/GPU programming environment

4International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

5International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Y

X

Z

XK6 Compute Node
Characteristics

AMD Series 6200 (Interlagos)

NVIDIA Tesla X2090

Host Memory
16 or 32GB

1600 MHz DDR3

NVIDIA Tesla X2090 Memory
6GB GDDR5 capacity

Gemini High Speed Interconnect

Upgradeable to future GPUs

 This is a short-lived situation
 Solutions coming from several vendors (NVIDIA, AMD,…)

 Keep kernel data structures resident in GPU memory
 Avoids copying b/w CPU and GPU; work on GPU-network communication

 May limit breadth of applicability over next 2-3 years

CPU
~100 GF

GPU
~665 GF

32GB
SDRAM 6 GB

GDDR

PCIe-2

8 GB/s

Memory

Capacity

~170 GB/s

Memory

Bandwidth

Flops
main()

~42 GB/s

Bandwidth

and Synchronization

6International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Primary issues with programming for GPUs:
 Learn new language/programming model

 Maintain two code bases/lack of portability

 Tuning for complex processor architecture (and split CPU/GPU
structure)

 Need a single programming model that is portable
across machine types and also forward scalable in time
 Portable expression of heterogeneity and multi-level

parallelism

 Programming model and optimization should not be
significantly difference for “accelerated” nodes and multi-core
x86 processors

 Allow users to maintain a single code base
7International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Cray XK6 includes the first-generation Cray Unified
X86/GPU Programming Environment

 Why is Cray putting so much effort into this?
 Need to shield user from the complexity of dealing with

heterogeneity

 High level language with good compiler and runtime support

 Optimized libraries for heterogeneous multicore processors

 It will support three classes of users:
1. "hardcore" GPU programmers with existing CUDA ports

2. users with parallel codes and OpenMP experience, but less
GPU knowledge

3. users with serial codes looking for portable parallel
performance with and without GPUs

8International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 An open standard is the most attractive for
developers
 portability; multiple compilers for debugging; permanence

 An established standards committee is better than a
new body
 Subcommittee of OpenMP ARB, aiming for OpenMP 4.0

 includes most major vendors (PGI, CAPS, Intel, IBM... +
other interested parties (e.g. EPCC)

 Co-chaired by Cray (James Beyer)

 Cray is an enthusiastic supporter
 CCE is first full implementation

 Fortran, C, C++

9International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Compiler does the work:

 Data movement
 allocates/frees GPU memory at start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of
GPU
 division of iterations between SIMT/MIMD units of GPU

 Cache usage
 Explicit use of GPU shared memory for reused data

 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on
directives

10

!$omp acc_region_loop
DO j = 1,M
DO i = 2,N
c(i,j) = a(i,j) + b(i,j)

ENDDO
ENDDO
!$omp end acc_region_loop

International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 3D Poisson equation
 19-point stencil

 Highly memory intensive, memory bandwidth bound

 Fortran, C, MPI and OpenMP implementations
available from http://accc.riken.jp/HPC_e/himenobmt_e.html

 Strong scaling benchmark
 Tests on XL configuration: 1024 x 512 x 512

 NVIDIA paper on GPU CUDA implementation
 Phillips, E.H.; Fatica, M.;

Implementing the Himeno benchmark with CUDA on GPU clusters
IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), 2010

11International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

http://accc.riken.jp/HPC_e/himenobmt_e.html

 The stencil is applied to
pressure array p

 Updated pressure values are
saved to temporary array
wrk2

 Control value wgosa is
computed

 In the benchmark this kernel
is iterated a fixed number of
times (nn)

DO K=2,kmax-1 DO J=2,jmax-1 DO I=2,imax-1

S0=a(I,J,K,1)*p(I+1,J, K) &

+a(I,J,K,2)*p(I, J+1,K) &

+a(I,J,K,3)*p(I, J, K+1) &

+b(I,J,K,1)*(p(I+1,J+1,K)-p(I+1,J-1,K) &

-p(I-1,J+1,K)+p(I-1,J-1,K))&

+b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

-p(I, J+1,K-1)+p(I, J-1,K-1))&

+b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

-p(I+1,J, K-1)+p(I-1,J, K-1))&

+c(I,J,K,1)*p(I-1,J, K) &

+c(I,J,K,2)*p(I, J-1,K) &

+c(I,J,K,3)*p(I, J, K-1)+ wrk1(I,J,K)

SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

WGOSA=WGOSA+SS*SS

wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

ENDDO ENDDO ENDDO

12International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 The outer loop is performed a
fixed number of times

 Jacobi kernel is executed and new
pressure array work2 and control
value wgosa are computed

 The array is updated with the new
pressure values

 The halo region values are
exchanged between neighbor PEs

 Send and receive buffers are used

 The global sum of the control
values is computed with an
Allreduce operation across all the
PEs

DO loop = 1, nn

compute Jacobi kernel and get wrk2

and wgosa

copy back wrk2 into p

pack halo region data from p into

send buffers

perform halo exchange with neighbor

PEs

unpack halo region data from recv

buffers into p

Allreduce to get global sum of wgosa

across all the PEs

ENDDO

13International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Several versions tested, with communication
implemented in MPI or Fortran coarrays

 GPU version using early pre-release implementation of
OpenMP Accelerator directives

 Arrays reside permanently in the GPU memory

 Data transfers between host and GPU are due to:
 Communication buffers for the halo exchange

 Control value

 Compare Cray XK6 timings with best Cray XE6 results
(hybrid MPI/OpenMP)
 Same number of nodes fully utilized: 1 GPU vs 24 CPU cores

14International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Arrays are allocated on the GPU
memory in the main program with
the acc_data directive

 In the subroutines the acc_data
directive is replicated with the
present clause, to use the data
already present in the GPU
memory and avoid extra
allocations

PROGRAM himenobmtxp

...

!$omp acc_data acc_shared (&

!$omp& p,a,b,c,wrk1,wrk2,bnd, &

!$omp& sendbuffx_up,sendbuffx_dn, &

!$omp& sendbuffy_up,sendbuffy_dn, &

!$omp& sendbuffz_up,sendbuffz_dn)

...

!$omp end acc_data

SUBROUTINE jacobi(nn,gosa)

!$omp acc_data present (&

!$omp& p,a,b,c,wrk1,wrk2,bnd, &

!$omp& sendbuffx_up,sendbuffx_dn, &

!$omp& sendbuffy_up,sendbuffy_dn, &

!$omp& sendbuffz_up,sendbuffz_dn)

15International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Preliminary: directive syntax may change – functionality will be the same

 The GPU kernel for the main loop
is created with the
acc_region_loop directive

 The scoping of the main variables
is specified earlier with the
acc_data directive - no need to
replicated it in here

 wgosa is computed by specifying
the reduction clause, as in a
standard OpenMP parallel loop

 num_pes clause is used to indicate
the number of threads within a
threadblock (default 128)

DO loop=1,nn

gosa=0.0

wgosa=0.0

!$omp acc_region_loop &

!$omp& private(s0,ss) &

!$omp& reduction(+:wgosa) &

!$omp& num_pes(2:256)

DO K=2,kmax-1

DO J=2,jmax-1

DO I=2,imax-1

S0=a(I,J,K,1)*p(I+1,J, K) &

...

WGOSA=WGOSA+SS*SS

ENDDO

ENDDO

ENDDO

16International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Preliminary: directive syntax may change – functionality will be the same

 Halo values are extracted from the
wrk2 array and packed into the
send buffers, on the GPU

 A global acc_region is specified and
buffers in the X, Y, and Z directions
are packed within acc_loop blocks

 The send buffers are copied to host
memory with acc_update

 In the same way, after the halo
exchange, the recv buffers are
transferred to the GPU memory
and used to update the array p

!$omp acc_region

!$omp acc_loop

DO j = 2,jmax-1

DO i = 2,imax-1

sendbuffz_dn(i,j)= wrk2(i,j,2)

sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

ENDDO

ENDDO

!$omp end acc_loop

...

!$omp acc_loop

!$omp end acc_loop

!$omp end acc_region

!$omp acc_update &

!$omp& host(sendbuffz_dn,sendbuffz_up)

17International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Preliminary: directive syntax may change – functionality will be the same

 Coarrays are used to perform the
halo exchange

 A non-blocking communication is
triggered by the pgas defer_sync
directive

 In this way the programmer is
responsible of the data
synchronization

 By setting the sync point as far as
possible, communication can be
overlapped to CPU or GPU activity

 In this case the array p update
from wrk2, on the GPU, can be
overlapped to the halo exchange

recvbuffz_up(:,:)[myx,myy,myz-1] =

sendbuffz_dn(:,:)

...

!$omp acc_region_loop

DO k = 2,kmax-1

DO j = 2,jmax-1

DO i = 2,imax-1

p(i,j,k) = wrk2(i,j,k)

ENDDO

ENDDO

ENDDO

!$omp end acc_region_loop

sync memory

!$omp acc_update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)

18International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Preliminary: directive syntax may change – functionality will be the same

 Original Himeno MPI-Fortran code: 629

 C /CUDA code: 823

 Version with coarrays and accelerator directives: 554

 Total number of accelerator directives: 24

19International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 XK6 configuration:
 MC-12 2.1GHz CPU cores, 12 cores per node

 Tesla X2090 GPU

 Running with 1 PE (GPU) per node

 Himeno case XL needs at least 8 XK6 nodes

 XE6 configuration:
 MC-12 2.1 GHz nodes, 24 cores per node

 Running on fully packed nodes: all cores used

 Depending on the number of nodes, 1-6 OpenMP threads
per PE are used

20International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Tha accelerated code on the XK6 outperforms the XE6

 Larger gap on small number of nodes

 CAF communication is more efficient than MPI

1

10

100

8 16 32 64 128

Ti
m

e
 (s

e
co

n
d

s)

Number of nodes

Himeno Benchmark - XL configuration

MPI/OMP

MPI/ACC

CAF/ACC

21International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 XK6 is always faster
 On 16 nodes the CPU code gets a superlinear boost due to cache effect

 On 8 nodes the GPU is about 200% faster than the CPU

 On 128 nodes the GPU is about 20% faster than the CPU

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

0 32 64 96 128

R
at

io
 t

o
 M

P
I/

O
M

P
 (

h
ig

h
e

r
is

 b
e

tt
e

r)

Number of nodes

Himeno Benchmark - XL configuration

MPI/ACC

CAF/ACC

22International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 The host/GPU transfers take a significant amount of time

 this code would benefit from an efficient direct GPU-GPU communication

 On 128 nodes less than 40% of the time is spent in the GPU compute kernel

23International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

8 16 32 64 128

Number of nodes

Himeno benchmark
XL case (1024x512x512)

GPU compute GPU -> Host Halo exchange Host -> GPU CPU

Benchmark Programming
Model

Unit of
Computation

Performance vs.
Dual Opteron Node

ICCG OpenMP Single Node 1.8

LBM OpenMP/MPI Multiple Nodes 2.1

CFD OpenMP Single Node 5

S3D kernels OpenMP/MPI Multiple Nodes 1.5 - 6

CG OpenMP Single Node 1.1

Himeno OpenMP/MPI Multiple Nodes 1.2 - 2.0

SWIM OpenMP Node 1.7

 GPU performance (currently not using Opteron)

 Alpha version tools and results (very much a work in progress)

 MOST EXCITING RESULT: Tuning for GPU has significantly improved
the all-CPU version in many cases, while retaining a compatible
programming model

24International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

 Before the end of this decade, we won’t think of this as
“accelerated computing” any more.
 It will just be how computing is done.

 The structural issues with today’s GPU systems will be gone.
 Hybrid multicore with shared memory hierarchy.

 Programming environments for hybrid multicore will be much
improved
 The user’s job will be to expose parallelism and convey information

about locality

 The compiler and runtime will map onto the hardware

 One version of code

 The next few years will be fun and challenging
 Will take significant work to tune applications for extreme scale

 Doesn’t have to be specific to accelerators; will pay off generally

25International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011

Acknowledgments:
Alistair Hart, John Levesque, Bill Long, Steve Scott, Luiz DeRose, James Beyer

