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 Extrapolating current systems based on multi-core X86 
CPUs will lead to unacceptably high power costs

 Multi-core CPUs are optimized for making single 
threads run fast, rather than many threads run power 
efficiently

 Heterogeneous nodes combining traditional multi-core 
CPUs with vector/SIMD accelerators hold promise to 
improve the power efficiency of HPC systems

 Another approach consists of supplying many more 
low-power cores on the node

 Both solutions present extreme programmability 
challenges !
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 NVIDIA FermiTM has made GPUs feasible for HPC
 Robust error protection and strong DP FP, plus 

programming enhancements

 Expect GPUs to make continued and significant 
inroads into HPC
 Compelling technical reasons + high volume market

 We are interested in large scale GPU configurations
 Not really interested in single GPU results

 Scaling GPU computing introduces new complexity
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 Hybrid architecture: heterogeneous nodes combining 
CPU and GPU
 CPU: AMD Opteron 6200 (Interlagos), 16 cores per socket

 GPU: Nvidia Tesla X2090 (Fermi+)

 Gemini Interconnect

 Unified X86/GPU programming environment
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XK6 Compute Node 
Characteristics

AMD Series 6200 (Interlagos)

NVIDIA Tesla X2090

Host Memory
16 or 32GB

1600 MHz DDR3

NVIDIA Tesla X2090 Memory
6GB GDDR5 capacity

Gemini High Speed Interconnect

Upgradeable to future GPUs



 This is a short-lived situation
 Solutions coming from several vendors (NVIDIA, AMD,…)

 Keep kernel data structures resident in GPU memory
 Avoids copying b/w CPU and GPU;  work on GPU-network communication

 May limit breadth of applicability over next 2-3 years

CPU
~100 GF

GPU
~665 GF

32GB 
SDRAM 6 GB 

GDDR

PCIe-2

8 GB/s

Memory 

Capacity

~170 GB/s

Memory

Bandwidth

Flops
main()

~42 GB/s

Bandwidth

and Synchronization
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 Primary issues with programming for GPUs:
 Learn new language/programming model

 Maintain two code bases/lack of portability

 Tuning for complex processor architecture (and split CPU/GPU 
structure)

 Need a single programming model that is portable 
across machine types and also forward scalable in time
 Portable expression of heterogeneity and multi-level 

parallelism

 Programming model and optimization should not be 
significantly difference for “accelerated” nodes and multi-core 
x86 processors

 Allow users to maintain a single code base
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 Cray XK6 includes the first-generation Cray Unified 
X86/GPU Programming Environment

 Why is Cray putting so much effort into this?
 Need to shield user from the complexity of dealing with 

heterogeneity

 High level language with good compiler and runtime support

 Optimized libraries for heterogeneous multicore processors

 It will support three classes of users:
1. "hardcore" GPU programmers with existing CUDA ports

2. users with parallel codes and OpenMP experience, but less 
GPU knowledge

3. users with serial codes looking for portable parallel 
performance with and without GPUs
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 An open standard is the most attractive for 
developers
 portability; multiple compilers for debugging; permanence

 An established standards committee is better than a 
new body
 Subcommittee of OpenMP ARB, aiming for OpenMP 4.0

 includes most major vendors (PGI, CAPS, Intel, IBM... + 
other interested parties (e.g. EPCC)

 Co-chaired by Cray (James Beyer)

 Cray is an enthusiastic supporter
 CCE is first full implementation

 Fortran, C, C++
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 Compiler does the work:

 Data movement
 allocates/frees GPU memory at start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of 
GPU
 division of iterations between SIMT/MIMD units of GPU

 Cache usage
 Explicit use of GPU shared memory for reused data

 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on 
directives
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!$omp acc_region_loop
DO j = 1,M
DO i = 2,N
c(i,j) = a(i,j) + b(i,j)

ENDDO
ENDDO
!$omp end acc_region_loop
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 3D Poisson equation
 19-point stencil

 Highly memory intensive, memory bandwidth bound

 Fortran, C, MPI and OpenMP implementations 
available from http://accc.riken.jp/HPC_e/himenobmt_e.html

 Strong scaling benchmark
 Tests on XL configuration: 1024 x 512 x 512

 NVIDIA paper on GPU CUDA implementation
 Phillips, E.H.; Fatica, M.;

Implementing the Himeno benchmark with CUDA on GPU clusters
IEEE International Symposium on Parallel & Distributed Processing 
(IPDPS), 2010
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 The stencil is applied to 
pressure array p

 Updated pressure values are 
saved to temporary array 
wrk2

 Control value wgosa is 
computed

 In the benchmark this kernel 
is iterated a fixed number of 
times (nn)

DO K=2,kmax-1  DO J=2,jmax-1  DO I=2,imax-1

S0=a(I,J,K,1)*p(I+1,J, K ) &

+a(I,J,K,2)*p(I, J+1,K ) &

+a(I,J,K,3)*p(I, J, K+1) &

+b(I,J,K,1)*(p(I+1,J+1,K )-p(I+1,J-1,K ) &

-p(I-1,J+1,K )+p(I-1,J-1,K ))&

+b(I,J,K,2)*(p(I, J+1,K+1)-p(I, J-1,K+1) &

-p(I, J+1,K-1)+p(I, J-1,K-1))&

+b(I,J,K,3)*(p(I+1,J, K+1)-p(I-1,J, K+1) &

-p(I+1,J, K-1)+p(I-1,J, K-1))&

+c(I,J,K,1)*p(I-1,J, K ) &

+c(I,J,K,2)*p(I, J-1,K ) &

+c(I,J,K,3)*p(I, J, K-1)+ wrk1(I,J,K)

SS=(S0*a(I,J,K,4)-p(I,J,K))*bnd(I,J,K)

WGOSA=WGOSA+SS*SS

wrk2(I,J,K)=p(I,J,K)+OMEGA *SS

ENDDO   ENDDO ENDDO
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 The outer loop is performed a 
fixed number of times

 Jacobi kernel is executed and new 
pressure array work2 and control 
value wgosa are computed

 The array is updated with the new 
pressure values

 The halo region values are 
exchanged between neighbor PEs

 Send and receive buffers are used

 The global sum of the control 
values is computed with an 
Allreduce operation across all the 
PEs

DO loop = 1, nn

compute Jacobi kernel and get wrk2 

and wgosa

copy back wrk2 into p

pack halo region data from p into 

send buffers

perform halo exchange with neighbor 

PEs

unpack halo region data from recv

buffers into p 

Allreduce to get global sum of wgosa

across all the PEs

ENDDO
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 Several versions tested, with communication 
implemented in MPI or Fortran coarrays

 GPU version using early pre-release implementation of 
OpenMP Accelerator directives

 Arrays reside permanently in the GPU memory

 Data transfers between host and GPU are due to:
 Communication buffers for the halo exchange

 Control value

 Compare Cray XK6 timings with best Cray XE6 results 
(hybrid MPI/OpenMP)
 Same number of nodes fully utilized: 1 GPU vs 24 CPU cores
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 Arrays are allocated on the GPU 
memory in the main program with 
the acc_data directive

 In the subroutines the acc_data
directive is replicated with the 
present clause, to use the data 
already present in the GPU 
memory and avoid extra 
allocations

PROGRAM himenobmtxp

...

!$omp acc_data acc_shared (        &

!$omp&  p,a,b,c,wrk1,wrk2,bnd,     &

!$omp&  sendbuffx_up,sendbuffx_dn, &

!$omp&  sendbuffy_up,sendbuffy_dn, &

!$omp&  sendbuffz_up,sendbuffz_dn)

...

!$omp end acc_data

SUBROUTINE jacobi(nn,gosa)

!$omp acc_data present (           &

!$omp&  p,a,b,c,wrk1,wrk2,bnd,     &

!$omp&  sendbuffx_up,sendbuffx_dn, &

!$omp&  sendbuffy_up,sendbuffy_dn, &

!$omp&  sendbuffz_up,sendbuffz_dn)
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Preliminary: directive syntax may change – functionality will be the same



 The GPU kernel for the main loop 
is created with the 
acc_region_loop directive

 The scoping of the main variables 
is specified earlier with the 
acc_data directive - no need to 
replicated it in here

 wgosa is computed by specifying 
the reduction clause, as in a 
standard OpenMP parallel loop

 num_pes clause is used to indicate 
the number of threads within a 
threadblock (default 128)

DO loop=1,nn

gosa=0.0

wgosa=0.0

!$omp acc_region_loop &

!$omp&  private(s0,ss)             &

!$omp&  reduction(+:wgosa)         &

!$omp&  num_pes(2:256)

DO K=2,kmax-1

DO J=2,jmax-1

DO I=2,imax-1

S0=a(I,J,K,1)*p(I+1,J, K ) &

...

WGOSA=WGOSA+SS*SS

ENDDO

ENDDO

ENDDO
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Preliminary: directive syntax may change – functionality will be the same



 Halo values are extracted from the 
wrk2 array and packed into the 
send buffers, on the GPU

 A global acc_region is specified and 
buffers in the X, Y, and Z directions 
are packed within acc_loop blocks

 The send buffers are copied to host 
memory with acc_update

 In the same way, after the halo 
exchange, the recv buffers are 
transferred to the GPU memory 
and used to update the array p

!$omp acc_region

!$omp acc_loop

DO j = 2,jmax-1

DO i = 2,imax-1

sendbuffz_dn(i,j)= wrk2(i,j,2)

sendbuffz_up(i,j)= wrk2(i,j,kmax-1)

ENDDO

ENDDO

!$omp end acc_loop

...

!$omp acc_loop

!$omp end acc_loop

!$omp end acc_region

!$omp acc_update &

!$omp&  host(sendbuffz_dn,sendbuffz_up)
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Preliminary: directive syntax may change – functionality will be the same



 Coarrays are used to perform the 
halo exchange

 A non-blocking communication is 
triggered by the pgas defer_sync
directive

 In this way the programmer is 
responsible of the data 
synchronization

 By setting the sync point as far as 
possible, communication can be 
overlapped to CPU or GPU activity

 In this case the array p update 
from wrk2, on the GPU, can be 
overlapped to the halo exchange

recvbuffz_up(:,:)[myx,myy,myz-1] =

sendbuffz_dn(:,:)

...

!$omp acc_region_loop

DO k = 2,kmax-1

DO j = 2,jmax-1

DO i = 2,imax-1

p(i,j,k) = wrk2(i,j,k)

ENDDO

ENDDO

ENDDO

!$omp end acc_region_loop

sync memory

!$omp acc_update &

!$omp& acc(recvbuffz_dn,recvbuffz_up)
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Preliminary: directive syntax may change – functionality will be the same



 Original Himeno MPI-Fortran code: 629

 C /CUDA code: 823

 Version with coarrays and accelerator directives: 554

 Total number of accelerator directives: 24
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 XK6 configuration: 
 MC-12 2.1GHz CPU cores, 12 cores per node

 Tesla X2090 GPU

 Running with 1 PE (GPU) per node

 Himeno case XL needs at least 8 XK6 nodes

 XE6 configuration:
 MC-12 2.1 GHz nodes, 24 cores per node

 Running on fully packed nodes: all cores used

 Depending on the number of nodes, 1-6 OpenMP threads 
per PE are used
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 Tha accelerated code on the XK6 outperforms the XE6

 Larger gap on small number of nodes

 CAF communication is more efficient than MPI
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 XK6 is always faster
 On 16 nodes the CPU code gets a superlinear boost due to cache effect

 On 8 nodes the GPU is about 200% faster than the CPU

 On 128 nodes the GPU is about 20% faster than the CPU
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 The host/GPU transfers take a significant amount of time

 this code would benefit from an efficient direct GPU-GPU communication

 On 128 nodes less than 40% of the time is spent in the GPU compute kernel
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Benchmark Programming 
Model

Unit of
Computation

Performance vs. 
Dual Opteron Node

ICCG OpenMP Single Node 1.8

LBM OpenMP/MPI Multiple Nodes 2.1

CFD OpenMP Single Node 5

S3D kernels OpenMP/MPI Multiple Nodes 1.5 - 6

CG OpenMP Single Node 1.1

Himeno OpenMP/MPI Multiple Nodes 1.2 - 2.0

SWIM OpenMP Node 1.7

 GPU performance (currently not using Opteron)

 Alpha version tools and results (very much a work in progress)

 MOST EXCITING RESULT: Tuning for GPU has significantly improved 
the all-CPU version in many cases, while retaining a compatible 
programming model

24International Research Workshop on Advanced High Performance Computing Systems – Cetraro June 27-29, 2011



 Before the end of this decade, we won’t think of this as 
“accelerated computing” any more.
 It will just be how computing is done. 

 The structural issues with today’s GPU systems will be gone.
 Hybrid multicore with shared memory hierarchy.

 Programming environments for hybrid multicore will be much 
improved
 The user’s job will be to expose parallelism and convey information 

about locality

 The compiler and runtime will map onto the hardware

 One version of code

 The next few years will be fun and challenging
 Will take significant work to tune applications for extreme scale

 Doesn’t have to be specific to accelerators; will pay off generally
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