
DAGuE: A Generic Distributed
DAG Engine for HPC
Flexible Development of Dense Linear Algebra Algorithms
on Heterogeneous Parallel Architectures with DAGuE

Hardware Complexity
-  Hierarchies of Multi-Cores
-  Non Uniform Memory Access
-  Accelerators
-  Networks with deep hierarchies

 Portability
-  Programming Portability
-  Performance Portability

Calls for Dynamic / Asynchronous Programming Model

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS operations

LAPACK (80’s)
(Blocking, cache friendly)

Rely on
 - Level-3 BLAS operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Software Evolution

Amdahl’s Law

speedup = s+ p
s+ p N

s

p

Amdahl’s Law

speedup = s+ p
s+ p N

s

p

Software/Algorithms follow hardware evolution in time

LINPACK (70’s)
(Vector operations)

Rely on
 - Level-1 BLAS operations

LAPACK (80’s)
(Blocking, cache friendly)

Rely on
 - Level-3 BLAS operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on
 - PBLAS Mess Passing

PLASMA (00’s)
New Algorithms
(many-core friendly)

Rely on
 - a DAG/scheduler
 - block data layout
 - some extra kernels

Software Evolution

Software Evolution (10’s)
Those new algorithms
 - have a very low granularity, they
scale very well (multicore, *scale
computing, …)
 - removes of dependencies among
the tasks, (multicore, distributed
computing)
 - avoid latency (distributed
computing, out-of-core)
 - rely on fast kernels
 Those new algorithms need new
kernels and rely on efficient scheduling
algorithms.

Data Layout

LAPACK SCALAPACK

PLASMA DPLASMA

4K pages – 2.4% memory overhead

PLASMA
•  Asychronicity

•  Avoid fork-join (Bulk sync
design)

•  Dynamic Scheduling
•  Out of order execution

•  Fine Granularity
•  Independent block

operations
•  Locality of Reference

•  Data storage – Block Data
Layout

Example: Cholesky Factorization
•  Cholesky Decomposition

•  Let A be a real symmetric positive definite matrix
•  Find L such that A = LLT

Tiled Algorithm in A. Buttari, J.
Langou, J. Kurzak, and J. Dongarra, A
class of parallel tiled linear algebra
algorithms for multicore
architectures, Parallel Computing,
2008

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

Cholesky Factorization

POTRF

TRSM

SYRK

GEMM

4x4 Cholesky

DPLASMA
•  Observations

•  DAG too large to be
generated ahead of time

•  Generate it dynamically
•  HPC is about distributed

heterogeneous resources
•  Have to get involved in

message passing
•  Distributed management

of the scheduling
•  Dynamically deal with

heterogeneity

Cholesky Factorization

4x4 Cholesky

Runtime
•  Algorithms need help to unleash their power

•  The runtime can provide portability, performance, scheduling
heuristics, heterogeneity management, data movement, …

•  Do not unroll/unpack the DAG, instead discover it during the
execution

•  Do not support explicit communications, instead make them
implicit and schedule them based on …

•  The need to express the algorithms differently

DAGuE Goals
•  Keep the algorithm as simple as possible

•  Depict only the flow of data between tasks
•  Distributed Dataflow Environment based on Dynamic Scheduling

of (Micro) Tasks

•  Programmability: layered approach
•  Algorithm / Data Distribution

•  Portability / Efficiency
•  Use all available hardware; overlap comm / comp

•  Decouple “System issues” from Algorithm

DAGuE toolchain

Input Serial Code
Imperfectly Nested

Affine Loops

User

DAGuE
Compiler

Omega Test

Symbolic
Representation of

the DAG
JDF

JDF Translator

User Code:
Kernel Bodies &
main program

DAGuE
runtime
Library

Parallel Tasks
Stubs

System Compiler

MPI /
Pthreads
Parallel
Program

DAGuE Compilers and Runtime

Input Format: SMPSS-Like

Algebra Methods Environment; University of Texas Austin)
[15].

B. Parameterized Task Graphs
One challenge in scaling to large scale many-core systems

is how to represent extremely large DAGs of tasks in a
compact fashion, incorporating the dependency analysis and
structure within the compact representation. Cosnard and
Loi have proposed the Parameterized Task Graph [16] as a
way to automatically generate and represent the task graphs
implicitly in an annotated sequential program. The data flow
within the sequential program is automatically analyzed to
produce a set of tasks and communication rules. The re-
sulting compact DAG representation is conceptually similar
to the representation described in this paper. Using the
parameterized task graph representation various static and
dynamic scheduling techniques were explored by Cosnard
et al. [17], [18].

C. Task BLAS for distributed linear algebra algorithms
The Task-based BLAS (TBLAS) project [19], [20] is an

alternative approach to task scheduling for linear algebra al-
gorithms in a distributed memory environment. The TBLAS
layer provides a distributed and scalable tile based substrate
for projects like ScaLAPACK [21]. Linear algebra routines
are written in a way that uses calls to the TBLAS layer,
and a dynamic runtime environment handles the execution
in an environment consisting of a set of distributed memory,
multi-core computational nodes.

The ScaLAPACK style linear algebra routines make a
sequence of calls to the TBLAS layer. The TBLAS layer
restructure the calls as a sequence of tile-based tasks, which
are then submitted to the dynamic runtime environment. The
runtime accepts additional task parameters (data items are
marked as input, output or input and output) upon insertion
of tasks into the system and this information is later used
to infer the dependences between various tasks. The tasks
can then be viewed as comprising a DAG with the data
dependences forming the edges. The runtime system uses
its knowledge of the data layout (e.g., block cyclic) in
order to determine where the data items are stored in a
distributed memory environment and decide which tasks
will be executed on the local node and which tasks will
be executed remotely. The portion of the DAG relevant to
the local tasks are retained at each node. Any task whose
dependences are satisfied can be executed by the cores on the
local node. As tasks execute, additional dependences become
satisfied and the computation can progress. Data items that
are required by a remote task are forwarded to that remote
node by the runtime.

This approach to task scheduling scales relatively well,
and has performance that is often comparable to that of
ScaLAPACK. However, there is an inherent bottleneck in
the DAG generation technique. Each node must execute the

!"#!"!#!$%%&'()*+,

!!!!-."/."/!0!123&456-."/."/7

!!!!!"#!8!#!"9,%%&'()*+,

!!!!!!!!-.8/."/!0!1&4*:6-."/."/;!-.8/."/7

!!!!!"#!<!#!"9,%%&'()*+,

!!!!!!!!-.</.</!0!1*=4>6-.</."/;!-.</.</7

!!!!!!!!!"#!8!#!<9,%%&'()*+,

!!!!!!!!!!!!-.8/.</!0!1?)::6-.8/."/;!-.</."/;!-.8/.</7

Figure 1. Pseudocode of the tile Cholesky factorization (right-looking
version).

Figure 2. Pseudocode of the tile QR factorization.

entire ScaLAPACK level computation and generate all the
tasks in the DAG, even though only the portions of the
DAG relevant to that node are retained. This is one of the
most fundamental design differences between TBLAS and
DAGuE.

III. BACKGROUND ON DEPENDENCE ANALYSIS

We will apply the DAGuE framework to three of the most
fundamental one-sided factorizations of numerical linear
algebra: Cholesky, LU, and QR factorizations. Figure 1
shows the pseudocode of the Cholesky factorization (the
right-looking variant). Figure 2 shows the pseudocode of
the tile QR factorization. Figure 3 shows the pseudocode of
the tile LU factorization. Each of the figures shows the tile
formulation of the respective algorithm: a single tile of the

Figure 3. Pseudocode of the tile LU factorization.

POTRF

TRSM

SYRK

GEMM

Input Format: Job Data Flow

POTRF

TRSM

SYRK

GEMM

TRSM(k, n)
// Execution space
k = 0..SIZE-1
n = k+1..SIZE-1
: A(n, k) // Parallel Partitionning
READ T <- T POTRF(k)
RW C <- (k == 0) ? A(n, k)
 : C GEMM(k-1, n, k)
 -> A SYRK(k, n)
 -> A GEMM(k, n+1..SIZE-1, n)
 -> B GEMM(k, n, k+1..n-1)
 -> A(n, k)

From Seq. to JDF
•  DAGuE Compiler

•  Analysis the data flow using
algebraic expressions

•  Omega Test used to
compute algebraic relations
between edges

•  Imperfectly nested affine
loop tests

•  Anti-Dependencies may
introduce additional control
edges

FOR k = 0 .. SIZE-1
 A[k][k], T[k][k] <- DGEQRT(A[k][k])
 FOR m = k+1 .. SIZE-1
 A[k][k], A[m][k], T[m][k] <-
 DTSQRT(A[k][k], A[m][k], T[m][k])
 FOR n = k+1 .. SIZE-1
 A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])
 FOR m = k+1 .. SIZE-1
 A[k][n], A[m][n] <-
 DSSSM(A[m][k], T[m][k], A[k][n], A[m][n])

Figure 1. Pseudo code of the Tile QR Factorization

• DGEQRT: The kernel performs the QR factorization of a di-
agonal tile and produces an upper triangular matrix R and a
unit lower triangular matrix V containing the Householder re-
flectors. The kernel also produces the upper triangular matrix
T as defined by the compact WY technique for accumulating
Householder reflectors [4, 29]. The R factor overrides the up-
per triangular portion of the input and the reflectors override
the lower triangular portion of the input. The T matrix is stored
separately.

• DTSQRT: The kernel performs the QR factorization of a matrix
built by coupling the R factor, produced by DGEQRT or a pre-
vious call to DTSQRT, with a tile below the diagonal tile. The
kernel produces an updated R factor, a square matrix V contain-
ing the Householder reflectors and the matrix T resulting from
accumulating the reflectors V. The new R factor overrides the
old R factor. The block of reflectors overrides the correspond-
ing tile of the input matrix. The T matrix is stored separately.

• DORMQR:The kernel applies the reflectors calculated by
DGEQRT to a tile to the right of the diagonal tile, using the
reflectors V along with the matrix T.

• DSSMQR:The kernel applies the reflectors and use the matrix
T calculated by DTSQRT to two tiles to the right of the tiles
factorized by DTSQRT.

The Cholesky factorization is mainly used for the numerical
solution of linear equations Ax = b, where A is symmetric and
positive definite. This factorization of an n × n real symmetric
positive definite matrix A has the form A = LLT , where L is an
n×n real lower triangular matrix with positive diagonal elements.
It relies also on four computational kernels: DPOTRF, DSYRK,
DTRSM and DGEMM. A detailed description of this algorithm can
be found in [10]. The LU factorization with partial row pivoting of
an m × n real matrix A has the form A = PLU , where L is an
m × n real unit lower triangular matrix, U is an n × n real upper
triangular matrix and P is a permutation matrix. It relies on four
kernels: DGETRF, DTSTRF, DGESSM and DSSSSM. A detailed
description of this algorithm can be found in [10, 28].

4. The Direct Acyclic Graph Environment
To schedule a set of tasks on emerging high performance architec-
tures, consisting of many multi-cores nodes, with explicit message
passing between the nodes, we isolated three main challenges: the
DAG representation must be adapted to fit the distributed environ-
ment paradigm (e.g. the engine should be aware of the data and task
distribution); in addition to the progression of the execution in the
DAG, corresponding data must flow between the nodes, to feed the
different tasks; and to ensure scalability, scheduling itself should
remain fully distributed.

In this section, we present the Direct Acyclic Graph Environ-
ment (DAGuE), and how it has been adapted to the distributed en-
vironment. We first present shortly the DAGuE framework, then

FOR k = 0 .. SIZE-1

 A[k][k], T[k][k] <- DGEQRT(A[k][k])

 FOR m = k+1 .. SIZE-1

 A[k][k], A[m][k], T[m][k] <-
 DTSQRT(A[k][k], A[m][k], T[m][k])

 FOR n = k+1 .. SIZE-1

 A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])

 FOR m = k+1 .. SIZE-1

 A[k][n], A[m][n] <-
 DSSSM(A[m][k], T[m][k], A[k][n], A[m][n])

MEM

k = 0

n = k+1
m = k+1

k = SIZE-1

UPPER

LOWER

Figure 2. Data dependencies for DGEQRT in QR

how the algorithm are represented for parallel execution, and the
key points of the run time.

4.1 The DAGuE framework
DAGuE consists of a library implementing a runtime engine and
a set of tools to build, analyze, and pre-compile a compact repre-
sentation of a DAG. The internal representation of Direct Acyclic
Graphs used by DAGuE is called Job Data Flow (JDF). It repre-
sents the different tasks of an application, their data dependencies,
how the data flows between tasks, and the data distribution in the
distributed systems, and is described below in Section 4.2.

A typical DAGuE application is a classical parallel MPI ap-
plication, linked with the DAGuE library. Using functions of the
library at run time, the application can call for the execution of
a task system, using an internal representations of DAGs, when
needed. These DAGs internal representations (opaque to the ap-
plication developer) are obtained from a JDF representation using
pre-compilers provided with the framework. The application devel-
oper is responsible for distributing the data on which the task sys-
tem will be executed. The DAGuE engine accesses the data through
developer-defined functions, enabling it to execute the tasks where
the data is located.

4.2 The Job Data Flow representation
Tile algorithms can easily be represented as DAGs [?]. To enable
scalability, and avoid memory consumption, we propose a compact
representation, based on the idea of Parametrized DAGs, that we
adapt to the distributed environment challenge. We describe this
representation, called Job Data Flow (JDF), with the example of
the Tile QR Factorization, whose sequential pseudo-code is given
Figure 1.

To understand how the JDF is built from the pseudo code of the
task, we consider the case of the DGEQRT kernel alone. Data de-
pendencies linked with the kernel DGEQRT from the pseudo code
of QR are expressed in Figure 2 with colored arrows. Blue arrows
represent incoming dependencies, while green ones represent out-
going dependencies. One can see from the pseudo-code that for k
= 0, DGEQRT reads the tile A(k, k), which has not been modified
by any other kernel. So, this value comes from memory. However,
after the first iteration of the outer loop, the last kernel to write in
A(k + 1, k + 1) is DSSSSM, when m = k + 1 and n = k + 1.

3 2010/7/30

Runtime DAG Representation
•  Every process has the

algebraic DAG rep.
•  Dist. Scheduling based on

remote completion
notifications

•  NUMA / Cache aware
Scheduling

•  Work Stealing and sharing
based on memory
hierarchies

Runtime DAGuE Engine

DPOTRF

DTRSM

DSYRK

DGEMM

Rank 0 Rank 1 Rank 2 Rank 3

•  Data Distribution (and data/task
affinity) imposes a task location

•  On each node, the full DAG
algebraic representation is
available

•  Each computing unit (core,
GPU, etc.) runs its own instance
of the DAGuE scheduler

•  An additional communication
thread sends completion
notifications and data when
necessary

Scheduling in DAGuE
•  Based on Work Stealing

•  Shared data structures with atomic access operations
•  Uniform scheduler: all scheduler run with the global view of the DAG and the

local view of progress (plus remote notifications)
•  Fully Distributed scheduler: all threads alternate between scheduling and work

•  Main heuristic: data locality
•  DAGuE engine tracks data usage, and targets to improve data reuse
•  NUMA aware hierarchical bounded buffers to implement work stealing

•  Users hints: tasks with “high priority”; Algebraic expressions for priorities
•  Insertion in waiting queue abides to priority, but work stealing can alter this

ordering
•  Communications heuristics

•  Communications inherits priority of destination task

Example: Reduction Operation
•  Apply a user defined operator on

each data and store the result in
a single location.

•  Suppose the operator is
associative and commutative.

Example: Reduction Operation
•  Apply a user defined operator on

each data and store the result in
a single location.

•  Suppose the operator is
associative and commutative.

Example: Reduction Operation
reduce(l, p)
 l = 1 .. depth+1
 p = 0 .. (MT / (1<<l))
 : A(p)
 READ A <- (1 == l) ? A(2*p) : C reduce(l - 1, 2 * p)
 READ B <- ((p * (1 << l) + (1 << (l-1))) > MT) ? A(0)
 <- (1 == l) ? A(2*p+1)
 <- (1 != l) ? C reduce(l - 1, p * 2 + 1)
 WRITE C -> ((depth+1) == l) ? R(p)
 -> (0 == (p%2)) ? A reduce(l+1, p/2)
 :B reduce(l+1, p/2)

DAGuE: Analysis Tools

Hermitian Band Diagonal; 16x16 tiles

Experimental Platform
Dancer @ UTK
•  32 Cores (8 sockets)
•  Intel Q9400 quad cores @

2.5GHz
•  4GB RAM
•  2x 1GB/s ethernet
•  4 nodes with Fermi GPU
•  4 nodes with Tesla GPU

 MKL-10.1.0.015 / gcc 4.4 / gfortran 4.4

Griffon@ Grid 5000
•  648 Cores (8 sockets)
•  Intel Q9400 octo cores @

2.5GHz
•  4GB RAM / core
•  Infiniband 20Gbs
•  no GPU

Scheduling overhead

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70

No
rm

al
iz

ed
 D

AG
uE

 s
ch

ed
ul

in
g

pe
rfo

rm
an

ce
(to

 th
e

co
m

pa
ra

bl
e

pt
hr

ea
ds

 e
xe

cu
tio

n)

Task granularity (NxN matrix, computational weight N3)

27 tasks
28 tasks
29 tasks

210 tasks

211 tasks
212 tasks
213 tasks
214 tasks

215 tasks
216 tasks
217 tasks
218 tasks

219 tasks
No Overhead

•  Scheduler capable of
handling fine grain
tasks – 1 microsec

Task granularity

 50

 60

 70

 80

 90

 100

 120
 160

 200
 260

 300
 340

 460
 640

 1000

%
 e

ffi
ci

en
cy

Block Size (NB)

1 Nodes (8 cores)
4 Nodes (32 cores)

81 Nodes (648 cores)

•  Depends on
the network,
available
resources.

•  For best
performance:
auto-tune
per system

Cholesky (problem size)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 13600
 26860

 40120
 53380

 66980
 80240

 93500
 106760

 120020
 130000

GF
lop

/s

Matrix size (N)

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

Griffon : 81 nodes, 648 cores, Infiniband 20Gbs

DPLASMA

Cholesky (weak scalability)

 0

 1000

 2000

 3000

 4000

 5000

 6000

8 32 64 200 288 392 512 648

GF
lop

/s

Number of cores

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

Cholesky (strong scalability)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 288 392 512 648

GF
lop

/s

Number of cores

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)

Single GPU – single node

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

Practical GPU GEMM Peak
DAGuE

DAGuE (restricted to 1 stream)
MAGMA

Figure 4. Fermi (C2050) Performance of Cholesky factorization according
to problem size. Comparison between DAGuE and MAGMA (Dancer,
single node).

 0

 200

 400

 600

 800

 1000

 1200

 1400

10k 20k 30k 40k 50k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

C1060x4
C1060x3
C1060x2
C1060x1

Figure 5. Multiple Teslas (C1060) Performance of Cholesky factorization
according to problem size (Mordor, single node).

compiler suite 11.1 (including MKL). The network backend
in DAGuE uses Open MPI 1.4.2. The version of CUDA is
3.1 on Mordor and 3.2 on Dancer. Experiments use single
precision arithmetic (appropriate to Tesla hardware).

B. Single GPU Single Node

Figure 4 presents the performance of DAGuE and
MAGMA for the Fermi nodes on the Dancer system.
MAGMA is the state of the art implementation of a linear
algebra library for GPU accelerated single node machines.
On this experiment, two DAGuE setups are presented, one
with streams and one without. In a CUDA kernel, the
GEMM input matrix is divided into inner blocks, called
warps which are then mapped to the grid of CUDA cores.
To reach parallel efficiency on distributed machines, DAGuE
favors a smaller tile size; as a consequence, there is no exact
divisor between the DAGuE tiling and the CUDA cores grid,
leading to some imbalanced warps at the end of every kernel.
Without streams, the GPU cores (including idle ones) are all
locked while those warps are executed. Because MAGMA
does not have to accommodate for distributed resources, it
can take as input the entire untiled matrix and then apply an
inner tiling of its choice that maps to the CUDA grid. This
explains why, although not benefiting from the computing
power of the CPU cores, MAGMA can compete very closely
with DAGuE, when restricted to one stream.

On the Fermi hardware, Nvidia introduced the capability
of concurrently running several kernels. When this concur-
rent execution feature is enabled, the load imbalance in
DAGuE from the outer tiling can be recovered by the extra
parallelism expressed by the DAG representation between
different GEMM kernels. As a consequence, as soon as
enough GEMM kernels are ready simultaneously, for matri-
ces larger than 2000, the tuning advantage of MAGMA can
be negated by this extra inter-kernel parallelism. Moreover,

as the DAGuE scheduler takes care of data movement
between CPUs and GPUs, it can accommodate for larger
matrices that do not fit entirely in the GPU memory. Overall,
the DAGuE code competes favorably with MAGMA, thanks
to the extra computing power provided by the CPU cores.

C. Multiple GPU Single Node

To further stress how the DAGuE Cholesky test case
performs on a variety of hardware, Figure 5 depicts the
performance on the Mordor multi-GPU shared memory
machine. Overall, based on the performance of a single
GPU in this configuration (around 400 GFlop/s), a perfectly
scalable framework is expected to deliver around 1500
GFlop/s on all four GPUs (the contribution of the CPUs
being accounted for only once). With up to 2 GPUs used at
the same time, the scalability is almost perfect. However, the
measured performance out of the 4 GPUs is slightly lower
than expected. This is mostly a consequence of the 2 GPUs
boards sharing a single PCI-E lane: a careful observation
of the traffic on the PCI-E bus indicates that due to the
increase in the number of requests to move data to and from
the GPUs, the shared bus becomes a bottleneck (a similar
effect is discussed in another context in Table I). Despite
this intricate hardware aspect, the DAGuE runtime is able
to harness a major speedup from this architecture as well,
from the same unchanged code.

D. Accelerated Clusters

1) GPU/NIC PCI-E bandwidth contentions: The first
question, when considering a distributed system encompass-
ing at the same time GPU accelerators and high performance
network interface cards, is to what extent the fact that both
type of hardware feature DMA chipsets, that compete for
the PCI-E and memory bandwidth, introduces perturbations
on the achieved performance. Table I presents the results

•  Fermi (C2050)
•  MAGMA 1.0

Multiple GPU – single node

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

Practical GPU GEMM Peak
DAGuE

DAGuE (restricted to 1 stream)
MAGMA

Figure 4. Fermi (C2050) Performance of Cholesky factorization according
to problem size. Comparison between DAGuE and MAGMA (Dancer,
single node).

 0

 200

 400

 600

 800

 1000

 1200

 1400

10k 20k 30k 40k 50k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Matrix size (N)

C1060x4
C1060x3
C1060x2
C1060x1

Figure 5. Multiple Teslas (C1060) Performance of Cholesky factorization
according to problem size (Mordor, single node).

compiler suite 11.1 (including MKL). The network backend
in DAGuE uses Open MPI 1.4.2. The version of CUDA is
3.1 on Mordor and 3.2 on Dancer. Experiments use single
precision arithmetic (appropriate to Tesla hardware).

B. Single GPU Single Node

Figure 4 presents the performance of DAGuE and
MAGMA for the Fermi nodes on the Dancer system.
MAGMA is the state of the art implementation of a linear
algebra library for GPU accelerated single node machines.
On this experiment, two DAGuE setups are presented, one
with streams and one without. In a CUDA kernel, the
GEMM input matrix is divided into inner blocks, called
warps which are then mapped to the grid of CUDA cores.
To reach parallel efficiency on distributed machines, DAGuE
favors a smaller tile size; as a consequence, there is no exact
divisor between the DAGuE tiling and the CUDA cores grid,
leading to some imbalanced warps at the end of every kernel.
Without streams, the GPU cores (including idle ones) are all
locked while those warps are executed. Because MAGMA
does not have to accommodate for distributed resources, it
can take as input the entire untiled matrix and then apply an
inner tiling of its choice that maps to the CUDA grid. This
explains why, although not benefiting from the computing
power of the CPU cores, MAGMA can compete very closely
with DAGuE, when restricted to one stream.

On the Fermi hardware, Nvidia introduced the capability
of concurrently running several kernels. When this concur-
rent execution feature is enabled, the load imbalance in
DAGuE from the outer tiling can be recovered by the extra
parallelism expressed by the DAG representation between
different GEMM kernels. As a consequence, as soon as
enough GEMM kernels are ready simultaneously, for matri-
ces larger than 2000, the tuning advantage of MAGMA can
be negated by this extra inter-kernel parallelism. Moreover,

as the DAGuE scheduler takes care of data movement
between CPUs and GPUs, it can accommodate for larger
matrices that do not fit entirely in the GPU memory. Overall,
the DAGuE code competes favorably with MAGMA, thanks
to the extra computing power provided by the CPU cores.

C. Multiple GPU Single Node

To further stress how the DAGuE Cholesky test case
performs on a variety of hardware, Figure 5 depicts the
performance on the Mordor multi-GPU shared memory
machine. Overall, based on the performance of a single
GPU in this configuration (around 400 GFlop/s), a perfectly
scalable framework is expected to deliver around 1500
GFlop/s on all four GPUs (the contribution of the CPUs
being accounted for only once). With up to 2 GPUs used at
the same time, the scalability is almost perfect. However, the
measured performance out of the 4 GPUs is slightly lower
than expected. This is mostly a consequence of the 2 GPUs
boards sharing a single PCI-E lane: a careful observation
of the traffic on the PCI-E bus indicates that due to the
increase in the number of requests to move data to and from
the GPUs, the shared bus becomes a bottleneck (a similar
effect is discussed in another context in Table I). Despite
this intricate hardware aspect, the DAGuE runtime is able
to harness a major speedup from this architecture as well,
from the same unchanged code.

D. Accelerated Clusters

1) GPU/NIC PCI-E bandwidth contentions: The first
question, when considering a distributed system encompass-
ing at the same time GPU accelerators and high performance
network interface cards, is to what extent the fact that both
type of hardware feature DMA chipsets, that compete for
the PCI-E and memory bandwidth, introduces perturbations
on the achieved performance. Table I presents the results

•  4xTesla (C1060)
•  8 cores

GPU vs. Network
Table I

IMPACT OF CONCURRENT ACCESSES BETWEEN GPU AND NIC ON THE
BANDWIDTH (GB/S) WITH A TILE SIZE OF 384

Perturbation none remote die same die interleave
Network - 11.533 11.363 11.001

GPU 0 push 29.250 26.497 12.897 25.919
GPU 1 push 21.509 21.580 11.457 21.553
GPU 0 pull 13.746 12.897 11.366 12.060
GPU 1 pull 13.089 11.457 9.636 10.767

of performing concurrent accesses to the memory and the
PCI-Express bus with GPU accelerators and HPC network
interfaces. In these experiments, two Dancer nodes were
added an extra GPU (Nvidia 8600GT). The NetPIPE ping-
pong benchmark has been modified to spawn two extra
threads, in order to stress the memory and PCI-E subsystems
with concurrent CUDA memory traffic to and from a GPU.
When no Infiniband interference is taking place, the GPU
memory copy aggregated bandwidth is over 50Gb/s pushing
data to the GPUs and 26.7Gb/s retrieving data. When the
Infiniband traffic is pinned to a different socket from the one
hosting the GPU threads, the GPU aggregated bandwidth
is slightly reduced to 48Gb/s and 24.3Gb/s. The worst
case scenario is to pin both Infiniband operations and GPU
traffic to the same socket, which reduces the performance to
33.1Gb/s and 20.9Gb/s. The Infiniband bandwidth is almost
unaffected. When the accessed memory is spread on all
NUMA banks (numactl interleave mode), the performance
penalty is comparable to the remote die setup; on the Dancer
system, all the PCI-Express buses are separated, therefore
the perturbations are mostly the consequence of memory
bank contentions. This setup mimics the floating network
thread of the DAGuE environment, demonstrating that, on
average, it avoids interference with the GPU operations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

192 256 320 384 448 512

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Tile Size

Fermi Cluster (4 nodes)
Tesla Cluster (4 nodes)

Cluster Without GPU (4 nodes)

Figure 6. Performance of the Cholesky factorization as a function of the
tile size, for a problem size of 34560 (Dancer cluster, 4 nodes).

2) Mixed Hardware Types: On heterogeneous system that
includes many different components, like Dancer, tuning the

size of the tiles on which the DAG will executed impacts
several parameters, from the speed of the BLAS kernels
on the differing computing units, to the efficiency of the
network transfers. Figure 6 presents the performance of the
Cholesky factorization on a 4 node cluster, when varying
the tile size, for a fixed problem size of 34560. The CPU-
only experiment illustrates that the DAGuE framework is
flexible enough that the network and CPU efficiency are
unaffected by the tile size, hence the tuning can focus
on GPU efficiency only. The performance of the GPU
accelerators are indeed strongly dependent on the tile size.
On the Fermi cluster, the performance increases steeply
when growing the tile size up to 320, but remains constant
for larger tiles. On the Tesla cluster, the performance drops
when using tile sizes larger than 384 (due to unavailability
of multiple streams). Overall, DAGuE allows for a single
set of tuning parameters that performs adequately on all
the considered hardware of Dancer, even when the setup
is mismatched.

 0

 500

 1000

 1500

 2000

 2500

1;30k 2;42k 4;60k 8;84k

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Number of Nodes;Matrix Size

Fermi Cluster
Tesla Cluster

Hybrid Cluster
Cluster without GPU

Figure 7. Weak Scalability: performance of the Cholesky factorization as
a function of the number of nodes, with a problem size scaled accordingly
(Dancer cluster).

3) Scalability: Figure 7 exhibits the weak scalability, i.e.,
the performance of the system when increasing both the
number of computing resources and problem size in order to
keep the workload per node constant. On platforms featuring
similar nodes (either all Tesla, all Fermi or all CPU), the
DAGuE runtime can harness the maximum speedup from
the distributed architecture.

Distributed platforms can be heterogeneous in two dif-
ferent ways. First, by featuring heterogeneous computing
units inside the nodes, a feature that is expected to become
mainstream for HPC systems in a near future and is a
main motivating factor for DAGuE existence. Second, by
gathering nodes of differing computing capacity, as is often
the case in desktop grids computing, but is not typical of
HPC. Because of the hardware features of our test machine,
to present 8 nodes scalability, we were forced to use the

•  The PCI bus is a critical resource shared between
different components

•  Scheduling cannot be done independently

Distributed GPUs

Table I
IMPACT OF CONCURRENT ACCESSES BETWEEN GPU AND NIC ON THE

BANDWIDTH (GB/S) WITH A TILE SIZE OF 384

Perturbation none remote die same die interleave
Network - 11.533 11.363 11.001

GPU 0 push 29.250 26.497 12.897 25.919
GPU 1 push 21.509 21.580 11.457 21.553
GPU 0 pull 13.746 12.897 11.366 12.060
GPU 1 pull 13.089 11.457 9.636 10.767

of performing concurrent accesses to the memory and the
PCI-Express bus with GPU accelerators and HPC network
interfaces. In these experiments, two Dancer nodes were
added an extra GPU (Nvidia 8600GT). The NetPIPE ping-
pong benchmark has been modified to spawn two extra
threads, in order to stress the memory and PCI-E subsystems
with concurrent CUDA memory traffic to and from a GPU.
When no Infiniband interference is taking place, the GPU
memory copy aggregated bandwidth is over 50Gb/s pushing
data to the GPUs and 26.7Gb/s retrieving data. When the
Infiniband traffic is pinned to a different socket from the one
hosting the GPU threads, the GPU aggregated bandwidth
is slightly reduced to 48Gb/s and 24.3Gb/s. The worst
case scenario is to pin both Infiniband operations and GPU
traffic to the same socket, which reduces the performance to
33.1Gb/s and 20.9Gb/s. The Infiniband bandwidth is almost
unaffected. When the accessed memory is spread on all
NUMA banks (numactl interleave mode), the performance
penalty is comparable to the remote die setup; on the Dancer
system, all the PCI-Express buses are separated, therefore
the perturbations are mostly the consequence of memory
bank contentions. This setup mimics the floating network
thread of the DAGuE environment, demonstrating that, on
average, it avoids interference with the GPU operations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

192 256 320 384 448 512

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Tile Size

Fermi Cluster (4 nodes)
Tesla Cluster (4 nodes)

Cluster Without GPU (4 nodes)

Figure 6. Performance of the Cholesky factorization as a function of the
tile size, for a problem size of 34560 (Dancer cluster, 4 nodes).

2) Mixed Hardware Types: On heterogeneous system that
includes many different components, like Dancer, tuning the

size of the tiles on which the DAG will executed impacts
several parameters, from the speed of the BLAS kernels
on the differing computing units, to the efficiency of the
network transfers. Figure 6 presents the performance of the
Cholesky factorization on a 4 node cluster, when varying
the tile size, for a fixed problem size of 34560. The CPU-
only experiment illustrates that the DAGuE framework is
flexible enough that the network and CPU efficiency are
unaffected by the tile size, hence the tuning can focus
on GPU efficiency only. The performance of the GPU
accelerators are indeed strongly dependent on the tile size.
On the Fermi cluster, the performance increases steeply
when growing the tile size up to 320, but remains constant
for larger tiles. On the Tesla cluster, the performance drops
when using tile sizes larger than 384 (due to unavailability
of multiple streams). Overall, DAGuE allows for a single
set of tuning parameters that performs adequately on all
the considered hardware of Dancer, even when the setup
is mismatched.

 0

 500

 1000

 1500

 2000

 2500

1;30k 2;42k 4;60k 8;84k

Pe
rf

or
m

an
ce

 (G
Fl

op
/s

)

Number of Nodes;Matrix Size

Fermi Cluster
Tesla Cluster

Hybrid Cluster
Cluster without GPU

Figure 7. Weak Scalability: performance of the Cholesky factorization as
a function of the number of nodes, with a problem size scaled accordingly
(Dancer cluster).

3) Scalability: Figure 7 exhibits the weak scalability, i.e.,
the performance of the system when increasing both the
number of computing resources and problem size in order to
keep the workload per node constant. On platforms featuring
similar nodes (either all Tesla, all Fermi or all CPU), the
DAGuE runtime can harness the maximum speedup from
the distributed architecture.

Distributed platforms can be heterogeneous in two dif-
ferent ways. First, by featuring heterogeneous computing
units inside the nodes, a feature that is expected to become
mainstream for HPC systems in a near future and is a
main motivating factor for DAGuE existence. Second, by
gathering nodes of differing computing capacity, as is often
the case in desktop grids computing, but is not typical of
HPC. Because of the hardware features of our test machine,
to present 8 nodes scalability, we were forced to use the

•  4xTesla (C1060)
•  4xFermi (C2050)
•  8 cores / node

•  Weak scaling

Conclusion
•  Hybrid programming (of dense LA) made easy(ier)

•  Portability: inherently take advantage of all hardware capabilities
•  Efficiency: deliver the best performance on tested algorithms

•  Works well with Dense Linear Algebra with Direct Method
•  Sparse?
•  Branch and Bound?
•  Iterative Method?

•  Let different people focus on different problems
•  Application developers on their algorithms
•  System developers on system issues

