
DAGuE: A Generic Distributed 
DAG Engine for HPC 
Flexible Development of Dense Linear Algebra Algorithms 
on Heterogeneous Parallel Architectures with DAGuE 



Hardware Complexity 
-  Hierarchies of Multi-Cores 
-  Non Uniform Memory Access 
-  Accelerators 
-  Networks with deep hierarchies 

 Portability 
-  Programming Portability 
-  Performance Portability 

Calls for Dynamic / Asynchronous Programming Model 



Software/Algorithms follow hardware evolution in time 

LINPACK (70’s) 
(Vector operations) 

 
 
 
 

Rely on  
   - Level-1 BLAS operations 

LAPACK (80’s) 
(Blocking, cache friendly) 

 
 
 
 

Rely on  
   - Level-3 BLAS operations 

ScaLAPACK (90’s) 
(Distributed Memory) 

Rely on  
   - PBLAS Mess Passing 

PLASMA (00’s) 
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   - some extra kernels 

Software Evolution 
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Software Evolution (10’s) 
Those new algorithms  
    - have a very low granularity, they 
scale very well (multicore, *scale 
computing, … ) 
    - removes of dependencies among 
the tasks, (multicore, distributed 
computing) 
    - avoid latency (distributed 
computing, out-of-core) 
    - rely on fast kernels  
 Those new algorithms need new 
kernels and rely on efficient scheduling 
algorithms. 



Data Layout 

LAPACK SCALAPACK 

PLASMA DPLASMA 

4K pages – 2.4% memory overhead 



PLASMA 
•  Asychronicity 

•  Avoid fork-join (Bulk sync 
design) 

•  Dynamic Scheduling 
•  Out of order execution 

•  Fine Granularity 
•  Independent block 

operations 
•  Locality of Reference 

•  Data storage – Block Data 
Layout 



Example: Cholesky Factorization 
•  Cholesky Decomposition 

•  Let A be a real symmetric positive definite matrix 
•  Find L such that A = LLT 

Tiled Algorithm in A. Buttari, J. 
Langou, J. Kurzak, and J. Dongarra, A 
class of parallel tiled linear algebra 
algorithms for multicore 
architectures, Parallel Computing, 
2008 
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Cholesky Factorization 

POTRF 

TRSM 

SYRK 

GEMM 

4x4 Cholesky 



DPLASMA 
•  Observations 

•  DAG too large to be 
generated ahead of time 

•  Generate it dynamically 
•  HPC is about distributed 

heterogeneous resources 
•  Have to get involved in 

message passing 
•  Distributed management 

of the scheduling 
•  Dynamically deal with 

heterogeneity 



Cholesky Factorization 

4x4 Cholesky 



Runtime 
•  Algorithms need help to unleash their power 

•  The runtime can provide portability, performance, scheduling 
heuristics, heterogeneity management, data movement, … 

•  Do not unroll/unpack the DAG, instead discover it during the 
execution 

•  Do not support explicit communications, instead make them 
implicit and schedule them based on … 

•  The need to express the algorithms differently 



DAGuE Goals 
•  Keep the algorithm as simple as possible 

•  Depict only the flow of data between tasks 
•  Distributed Dataflow Environment based on Dynamic Scheduling 

of (Micro) Tasks 

•  Programmability: layered approach 
•  Algorithm / Data Distribution 

•  Portability / Efficiency 
•  Use all available hardware; overlap comm / comp 

•  Decouple “System issues” from Algorithm 



DAGuE toolchain 

Input Serial Code
Imperfectly Nested 

Affine Loops

User

DAGuE
Compiler

Omega Test

Symbolic 
Representation of 

the DAG
JDF

JDF Translator

User Code:
Kernel Bodies &
main program

DAGuE
runtime
Library

Parallel Tasks
Stubs

System Compiler

MPI / 
Pthreads
Parallel
Program

DAGuE Compilers and Runtime



Input Format: SMPSS-Like 

Algebra Methods Environment; University of Texas Austin)
[15].

B. Parameterized Task Graphs
One challenge in scaling to large scale many-core systems

is how to represent extremely large DAGs of tasks in a
compact fashion, incorporating the dependency analysis and
structure within the compact representation. Cosnard and
Loi have proposed the Parameterized Task Graph [16] as a
way to automatically generate and represent the task graphs
implicitly in an annotated sequential program. The data flow
within the sequential program is automatically analyzed to
produce a set of tasks and communication rules. The re-
sulting compact DAG representation is conceptually similar
to the representation described in this paper. Using the
parameterized task graph representation various static and
dynamic scheduling techniques were explored by Cosnard
et al. [17], [18].

C. Task BLAS for distributed linear algebra algorithms
The Task-based BLAS (TBLAS) project [19], [20] is an

alternative approach to task scheduling for linear algebra al-
gorithms in a distributed memory environment. The TBLAS
layer provides a distributed and scalable tile based substrate
for projects like ScaLAPACK [21]. Linear algebra routines
are written in a way that uses calls to the TBLAS layer,
and a dynamic runtime environment handles the execution
in an environment consisting of a set of distributed memory,
multi-core computational nodes.

The ScaLAPACK style linear algebra routines make a
sequence of calls to the TBLAS layer. The TBLAS layer
restructure the calls as a sequence of tile-based tasks, which
are then submitted to the dynamic runtime environment. The
runtime accepts additional task parameters (data items are
marked as input, output or input and output) upon insertion
of tasks into the system and this information is later used
to infer the dependences between various tasks. The tasks
can then be viewed as comprising a DAG with the data
dependences forming the edges. The runtime system uses
its knowledge of the data layout (e.g., block cyclic) in
order to determine where the data items are stored in a
distributed memory environment and decide which tasks
will be executed on the local node and which tasks will
be executed remotely. The portion of the DAG relevant to
the local tasks are retained at each node. Any task whose
dependences are satisfied can be executed by the cores on the
local node. As tasks execute, additional dependences become
satisfied and the computation can progress. Data items that
are required by a remote task are forwarded to that remote
node by the runtime.

This approach to task scheduling scales relatively well,
and has performance that is often comparable to that of
ScaLAPACK. However, there is an inherent bottleneck in
the DAG generation technique. Each node must execute the
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Figure 1. Pseudocode of the tile Cholesky factorization (right-looking
version).

Figure 2. Pseudocode of the tile QR factorization.

entire ScaLAPACK level computation and generate all the
tasks in the DAG, even though only the portions of the
DAG relevant to that node are retained. This is one of the
most fundamental design differences between TBLAS and
DAGuE.

III. BACKGROUND ON DEPENDENCE ANALYSIS

We will apply the DAGuE framework to three of the most
fundamental one-sided factorizations of numerical linear
algebra: Cholesky, LU, and QR factorizations. Figure 1
shows the pseudocode of the Cholesky factorization (the
right-looking variant). Figure 2 shows the pseudocode of
the tile QR factorization. Figure 3 shows the pseudocode of
the tile LU factorization. Each of the figures shows the tile
formulation of the respective algorithm: a single tile of the

Figure 3. Pseudocode of the tile LU factorization.
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Input Format: Job Data Flow 

POTRF

TRSM

SYRK

GEMM

TRSM(k, n)
// Execution space
k = 0..SIZE-1
n = k+1..SIZE-1
: A(n, k) // Parallel Partitionning
READ  T <- T POTRF(k)
RW    C <- (k == 0) ? A(n, k) 
                    : C GEMM(k-1, n, k)
        -> A SYRK(k, n)
        -> A GEMM(k, n+1..SIZE-1, n)
        -> B GEMM(k, n, k+1..n-1)
        -> A(n, k)



From Seq. to JDF 
•  DAGuE Compiler 

•  Analysis the data flow using 
algebraic expressions 

•  Omega Test used to 
compute algebraic relations 
between edges 

•  Imperfectly nested affine 
loop tests 

•  Anti-Dependencies may 
introduce additional control 
edges 

FOR k = 0 .. SIZE-1
  A[k][k], T[k][k] <- DGEQRT(A[k][k])
  FOR m = k+1 .. SIZE-1
    A[k][k], A[m][k], T[m][k] <- 
         DTSQRT(A[k][k], A[m][k], T[m][k])
  FOR n = k+1 .. SIZE-1
    A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])
    FOR m = k+1 .. SIZE-1
      A[k][n], A[m][n] <- 
           DSSSM(A[m][k], T[m][k], A[k][n], A[m][n])

Figure 1. Pseudo code of the Tile QR Factorization

• DGEQRT: The kernel performs the QR factorization of a di-
agonal tile and produces an upper triangular matrix R and a
unit lower triangular matrix V containing the Householder re-
flectors. The kernel also produces the upper triangular matrix
T as defined by the compact WY technique for accumulating
Householder reflectors [4, 29]. The R factor overrides the up-
per triangular portion of the input and the reflectors override
the lower triangular portion of the input. The T matrix is stored
separately.

• DTSQRT: The kernel performs the QR factorization of a matrix
built by coupling the R factor, produced by DGEQRT or a pre-
vious call to DTSQRT, with a tile below the diagonal tile. The
kernel produces an updated R factor, a square matrix V contain-
ing the Householder reflectors and the matrix T resulting from
accumulating the reflectors V. The new R factor overrides the
old R factor. The block of reflectors overrides the correspond-
ing tile of the input matrix. The T matrix is stored separately.

• DORMQR:The kernel applies the reflectors calculated by
DGEQRT to a tile to the right of the diagonal tile, using the
reflectors V along with the matrix T.

• DSSMQR:The kernel applies the reflectors and use the matrix
T calculated by DTSQRT to two tiles to the right of the tiles
factorized by DTSQRT.

The Cholesky factorization is mainly used for the numerical
solution of linear equations Ax = b, where A is symmetric and
positive definite. This factorization of an n × n real symmetric
positive definite matrix A has the form A = LLT , where L is an
n×n real lower triangular matrix with positive diagonal elements.
It relies also on four computational kernels: DPOTRF, DSYRK,
DTRSM and DGEMM. A detailed description of this algorithm can
be found in [10]. The LU factorization with partial row pivoting of
an m × n real matrix A has the form A = PLU , where L is an
m × n real unit lower triangular matrix, U is an n × n real upper
triangular matrix and P is a permutation matrix. It relies on four
kernels: DGETRF, DTSTRF, DGESSM and DSSSSM. A detailed
description of this algorithm can be found in [10, 28].

4. The Direct Acyclic Graph Environment
To schedule a set of tasks on emerging high performance architec-
tures, consisting of many multi-cores nodes, with explicit message
passing between the nodes, we isolated three main challenges: the
DAG representation must be adapted to fit the distributed environ-
ment paradigm (e.g. the engine should be aware of the data and task
distribution); in addition to the progression of the execution in the
DAG, corresponding data must flow between the nodes, to feed the
different tasks; and to ensure scalability, scheduling itself should
remain fully distributed.

In this section, we present the Direct Acyclic Graph Environ-
ment (DAGuE), and how it has been adapted to the distributed en-
vironment. We first present shortly the DAGuE framework, then

FOR k = 0 .. SIZE-1

  A[k][k], T[k][k] <- DGEQRT(A[k][k])

  FOR m = k+1 .. SIZE-1

    A[k][k], A[m][k], T[m][k] <- 
         DTSQRT(A[k][k], A[m][k], T[m][k])

  FOR n = k+1 .. SIZE-1

    A[k][n] <- DORMQR(A[k][k], T[k][k], A[k][n])

    FOR m = k+1 .. SIZE-1

      A[k][n], A[m][n] <- 
           DSSSM(A[m][k], T[m][k], A[k][n], A[m][n])

MEM

k = 0

n = k+1
m = k+1

k = SIZE-1

UPPER

LOWER

Figure 2. Data dependencies for DGEQRT in QR

how the algorithm are represented for parallel execution, and the
key points of the run time.

4.1 The DAGuE framework
DAGuE consists of a library implementing a runtime engine and
a set of tools to build, analyze, and pre-compile a compact repre-
sentation of a DAG. The internal representation of Direct Acyclic
Graphs used by DAGuE is called Job Data Flow (JDF). It repre-
sents the different tasks of an application, their data dependencies,
how the data flows between tasks, and the data distribution in the
distributed systems, and is described below in Section 4.2.

A typical DAGuE application is a classical parallel MPI ap-
plication, linked with the DAGuE library. Using functions of the
library at run time, the application can call for the execution of
a task system, using an internal representations of DAGs, when
needed. These DAGs internal representations (opaque to the ap-
plication developer) are obtained from a JDF representation using
pre-compilers provided with the framework. The application devel-
oper is responsible for distributing the data on which the task sys-
tem will be executed. The DAGuE engine accesses the data through
developer-defined functions, enabling it to execute the tasks where
the data is located.

4.2 The Job Data Flow representation
Tile algorithms can easily be represented as DAGs [? ]. To enable
scalability, and avoid memory consumption, we propose a compact
representation, based on the idea of Parametrized DAGs, that we
adapt to the distributed environment challenge. We describe this
representation, called Job Data Flow (JDF), with the example of
the Tile QR Factorization, whose sequential pseudo-code is given
Figure 1.

To understand how the JDF is built from the pseudo code of the
task, we consider the case of the DGEQRT kernel alone. Data de-
pendencies linked with the kernel DGEQRT from the pseudo code
of QR are expressed in Figure 2 with colored arrows. Blue arrows
represent incoming dependencies, while green ones represent out-
going dependencies. One can see from the pseudo-code that for k
= 0, DGEQRT reads the tile A(k, k), which has not been modified
by any other kernel. So, this value comes from memory. However,
after the first iteration of the outer loop, the last kernel to write in
A(k + 1, k + 1) is DSSSSM, when m = k + 1 and n = k + 1.

3 2010/7/30



Runtime DAG Representation 
•  Every process has the 

algebraic DAG rep. 
•  Dist. Scheduling based on 

remote completion 
notifications 

•  NUMA / Cache aware 
Scheduling 

•  Work Stealing and sharing 
based on memory 
hierarchies 



Runtime DAGuE Engine 

DPOTRF

DTRSM

DSYRK

DGEMM

Rank 0 Rank 1 Rank 2 Rank 3

•  Data Distribution (and data/task 
affinity) imposes a task location 

•  On each node, the full DAG 
algebraic representation is 
available 

•  Each computing unit (core, 
GPU, etc.) runs its own instance 
of the DAGuE scheduler 

•  An additional communication 
thread sends completion 
notifications and data when 
necessary 



Scheduling in DAGuE 
•  Based on Work Stealing 

•  Shared data structures with atomic access operations 
•  Uniform scheduler: all scheduler run with the global view of the DAG and the 

local view of progress (plus remote notifications)  
•  Fully Distributed scheduler: all threads alternate between scheduling and work 

•  Main heuristic: data locality 
•  DAGuE engine tracks data usage, and targets to improve data reuse 
•  NUMA aware hierarchical bounded buffers to implement work stealing 

•  Users hints: tasks with “high priority”; Algebraic expressions for priorities 
•  Insertion in waiting queue abides to priority, but work stealing can alter this 

ordering 
•  Communications heuristics 

•  Communications inherits priority of destination task 



Example: Reduction Operation 
•  Apply a user defined operator on 

each data and store the result in 
a single location. 

•  Suppose the operator is 
associative and commutative. 



Example: Reduction Operation 
•  Apply a user defined operator on 

each data and store the result in 
a single location. 

•  Suppose the operator is 
associative and commutative. 



Example: Reduction Operation 
reduce(l, p) 
  l = 1 .. depth+1 
  p = 0 .. (MT / (1<<l)) 
  : A( p ) 
 READ A <- (1 == l) ? A(2*p) : C reduce( l - 1, 2 * p ) 
 READ B <- ((p * (1 << l) + (1 << (l-1))) >  MT)  ? A(0) 
               <- (1 == l) ? A(2*p+1) 
               <- (1 != l)  ? C reduce(l - 1, p * 2 + 1) 
  WRITE C -> ((depth+1) == l) ? R(p) 
          -> (0 == (p%2)) ? A reduce(l+1, p/2) 
                                    :B reduce(l+1, p/2) 



DAGuE: Analysis Tools 

Hermitian Band Diagonal; 16x16 tiles 





Experimental Platform 
Dancer @ UTK 
•  32 Cores (8 sockets) 
•  Intel Q9400 quad cores @ 

2.5GHz 
•  4GB RAM 
•  2x 1GB/s ethernet 
•  4 nodes with Fermi GPU 
•  4 nodes with Tesla GPU 

 MKL-10.1.0.015 / gcc 4.4 / gfortran 4.4 

Griffon@ Grid 5000 
•  648 Cores (8 sockets) 
•  Intel Q9400 octo cores @ 

2.5GHz 
•  4GB RAM / core 
•  Infiniband 20Gbs 
•  no GPU 



Scheduling overhead 
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Task granularity 
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Cholesky (weak scalability) 
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Cholesky (strong scalability) 

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

200 288 392 512 648

GF
lop

/s

Number of cores

Theoretical peak
GEMM peak

DAGuE (NB=340)
DSBP (NB=340)

ScaLAPACK (NB=120)



Single GPU – single node 
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Figure 4. Fermi (C2050) Performance of Cholesky factorization according
to problem size. Comparison between DAGuE and MAGMA (Dancer,
single node).
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compiler suite 11.1 (including MKL). The network backend
in DAGuE uses Open MPI 1.4.2. The version of CUDA is
3.1 on Mordor and 3.2 on Dancer. Experiments use single
precision arithmetic (appropriate to Tesla hardware).

B. Single GPU Single Node

Figure 4 presents the performance of DAGuE and
MAGMA for the Fermi nodes on the Dancer system.
MAGMA is the state of the art implementation of a linear
algebra library for GPU accelerated single node machines.
On this experiment, two DAGuE setups are presented, one
with streams and one without. In a CUDA kernel, the
GEMM input matrix is divided into inner blocks, called
warps which are then mapped to the grid of CUDA cores.
To reach parallel efficiency on distributed machines, DAGuE
favors a smaller tile size; as a consequence, there is no exact
divisor between the DAGuE tiling and the CUDA cores grid,
leading to some imbalanced warps at the end of every kernel.
Without streams, the GPU cores (including idle ones) are all
locked while those warps are executed. Because MAGMA
does not have to accommodate for distributed resources, it
can take as input the entire untiled matrix and then apply an
inner tiling of its choice that maps to the CUDA grid. This
explains why, although not benefiting from the computing
power of the CPU cores, MAGMA can compete very closely
with DAGuE, when restricted to one stream.

On the Fermi hardware, Nvidia introduced the capability
of concurrently running several kernels. When this concur-
rent execution feature is enabled, the load imbalance in
DAGuE from the outer tiling can be recovered by the extra
parallelism expressed by the DAG representation between
different GEMM kernels. As a consequence, as soon as
enough GEMM kernels are ready simultaneously, for matri-
ces larger than 2000, the tuning advantage of MAGMA can
be negated by this extra inter-kernel parallelism. Moreover,

as the DAGuE scheduler takes care of data movement
between CPUs and GPUs, it can accommodate for larger
matrices that do not fit entirely in the GPU memory. Overall,
the DAGuE code competes favorably with MAGMA, thanks
to the extra computing power provided by the CPU cores.

C. Multiple GPU Single Node

To further stress how the DAGuE Cholesky test case
performs on a variety of hardware, Figure 5 depicts the
performance on the Mordor multi-GPU shared memory
machine. Overall, based on the performance of a single
GPU in this configuration (around 400 GFlop/s), a perfectly
scalable framework is expected to deliver around 1500
GFlop/s on all four GPUs (the contribution of the CPUs
being accounted for only once). With up to 2 GPUs used at
the same time, the scalability is almost perfect. However, the
measured performance out of the 4 GPUs is slightly lower
than expected. This is mostly a consequence of the 2 GPUs
boards sharing a single PCI-E lane: a careful observation
of the traffic on the PCI-E bus indicates that due to the
increase in the number of requests to move data to and from
the GPUs, the shared bus becomes a bottleneck (a similar
effect is discussed in another context in Table I). Despite
this intricate hardware aspect, the DAGuE runtime is able
to harness a major speedup from this architecture as well,
from the same unchanged code.

D. Accelerated Clusters

1) GPU/NIC PCI-E bandwidth contentions: The first
question, when considering a distributed system encompass-
ing at the same time GPU accelerators and high performance
network interface cards, is to what extent the fact that both
type of hardware feature DMA chipsets, that compete for
the PCI-E and memory bandwidth, introduces perturbations
on the achieved performance. Table I presents the results

•  Fermi (C2050)  
•  MAGMA 1.0 
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compiler suite 11.1 (including MKL). The network backend
in DAGuE uses Open MPI 1.4.2. The version of CUDA is
3.1 on Mordor and 3.2 on Dancer. Experiments use single
precision arithmetic (appropriate to Tesla hardware).

B. Single GPU Single Node

Figure 4 presents the performance of DAGuE and
MAGMA for the Fermi nodes on the Dancer system.
MAGMA is the state of the art implementation of a linear
algebra library for GPU accelerated single node machines.
On this experiment, two DAGuE setups are presented, one
with streams and one without. In a CUDA kernel, the
GEMM input matrix is divided into inner blocks, called
warps which are then mapped to the grid of CUDA cores.
To reach parallel efficiency on distributed machines, DAGuE
favors a smaller tile size; as a consequence, there is no exact
divisor between the DAGuE tiling and the CUDA cores grid,
leading to some imbalanced warps at the end of every kernel.
Without streams, the GPU cores (including idle ones) are all
locked while those warps are executed. Because MAGMA
does not have to accommodate for distributed resources, it
can take as input the entire untiled matrix and then apply an
inner tiling of its choice that maps to the CUDA grid. This
explains why, although not benefiting from the computing
power of the CPU cores, MAGMA can compete very closely
with DAGuE, when restricted to one stream.

On the Fermi hardware, Nvidia introduced the capability
of concurrently running several kernels. When this concur-
rent execution feature is enabled, the load imbalance in
DAGuE from the outer tiling can be recovered by the extra
parallelism expressed by the DAG representation between
different GEMM kernels. As a consequence, as soon as
enough GEMM kernels are ready simultaneously, for matri-
ces larger than 2000, the tuning advantage of MAGMA can
be negated by this extra inter-kernel parallelism. Moreover,

as the DAGuE scheduler takes care of data movement
between CPUs and GPUs, it can accommodate for larger
matrices that do not fit entirely in the GPU memory. Overall,
the DAGuE code competes favorably with MAGMA, thanks
to the extra computing power provided by the CPU cores.

C. Multiple GPU Single Node

To further stress how the DAGuE Cholesky test case
performs on a variety of hardware, Figure 5 depicts the
performance on the Mordor multi-GPU shared memory
machine. Overall, based on the performance of a single
GPU in this configuration (around 400 GFlop/s), a perfectly
scalable framework is expected to deliver around 1500
GFlop/s on all four GPUs (the contribution of the CPUs
being accounted for only once). With up to 2 GPUs used at
the same time, the scalability is almost perfect. However, the
measured performance out of the 4 GPUs is slightly lower
than expected. This is mostly a consequence of the 2 GPUs
boards sharing a single PCI-E lane: a careful observation
of the traffic on the PCI-E bus indicates that due to the
increase in the number of requests to move data to and from
the GPUs, the shared bus becomes a bottleneck (a similar
effect is discussed in another context in Table I). Despite
this intricate hardware aspect, the DAGuE runtime is able
to harness a major speedup from this architecture as well,
from the same unchanged code.

D. Accelerated Clusters

1) GPU/NIC PCI-E bandwidth contentions: The first
question, when considering a distributed system encompass-
ing at the same time GPU accelerators and high performance
network interface cards, is to what extent the fact that both
type of hardware feature DMA chipsets, that compete for
the PCI-E and memory bandwidth, introduces perturbations
on the achieved performance. Table I presents the results

•  4xTesla (C1060)  
•  8 cores 



GPU vs. Network 
Table I

IMPACT OF CONCURRENT ACCESSES BETWEEN GPU AND NIC ON THE
BANDWIDTH (GB/S) WITH A TILE SIZE OF 384

Perturbation none remote die same die interleave
Network - 11.533 11.363 11.001

GPU 0 push 29.250 26.497 12.897 25.919
GPU 1 push 21.509 21.580 11.457 21.553
GPU 0 pull 13.746 12.897 11.366 12.060
GPU 1 pull 13.089 11.457 9.636 10.767

of performing concurrent accesses to the memory and the
PCI-Express bus with GPU accelerators and HPC network
interfaces. In these experiments, two Dancer nodes were
added an extra GPU (Nvidia 8600GT). The NetPIPE ping-
pong benchmark has been modified to spawn two extra
threads, in order to stress the memory and PCI-E subsystems
with concurrent CUDA memory traffic to and from a GPU.
When no Infiniband interference is taking place, the GPU
memory copy aggregated bandwidth is over 50Gb/s pushing
data to the GPUs and 26.7Gb/s retrieving data. When the
Infiniband traffic is pinned to a different socket from the one
hosting the GPU threads, the GPU aggregated bandwidth
is slightly reduced to 48Gb/s and 24.3Gb/s. The worst
case scenario is to pin both Infiniband operations and GPU
traffic to the same socket, which reduces the performance to
33.1Gb/s and 20.9Gb/s. The Infiniband bandwidth is almost
unaffected. When the accessed memory is spread on all
NUMA banks (numactl interleave mode), the performance
penalty is comparable to the remote die setup; on the Dancer
system, all the PCI-Express buses are separated, therefore
the perturbations are mostly the consequence of memory
bank contentions. This setup mimics the floating network
thread of the DAGuE environment, demonstrating that, on
average, it avoids interference with the GPU operations.
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Figure 6. Performance of the Cholesky factorization as a function of the
tile size, for a problem size of 34560 (Dancer cluster, 4 nodes).

2) Mixed Hardware Types: On heterogeneous system that
includes many different components, like Dancer, tuning the

size of the tiles on which the DAG will executed impacts
several parameters, from the speed of the BLAS kernels
on the differing computing units, to the efficiency of the
network transfers. Figure 6 presents the performance of the
Cholesky factorization on a 4 node cluster, when varying
the tile size, for a fixed problem size of 34560. The CPU-
only experiment illustrates that the DAGuE framework is
flexible enough that the network and CPU efficiency are
unaffected by the tile size, hence the tuning can focus
on GPU efficiency only. The performance of the GPU
accelerators are indeed strongly dependent on the tile size.
On the Fermi cluster, the performance increases steeply
when growing the tile size up to 320, but remains constant
for larger tiles. On the Tesla cluster, the performance drops
when using tile sizes larger than 384 (due to unavailability
of multiple streams). Overall, DAGuE allows for a single
set of tuning parameters that performs adequately on all
the considered hardware of Dancer, even when the setup
is mismatched.
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Figure 7. Weak Scalability: performance of the Cholesky factorization as
a function of the number of nodes, with a problem size scaled accordingly
(Dancer cluster).

3) Scalability: Figure 7 exhibits the weak scalability, i.e.,
the performance of the system when increasing both the
number of computing resources and problem size in order to
keep the workload per node constant. On platforms featuring
similar nodes (either all Tesla, all Fermi or all CPU), the
DAGuE runtime can harness the maximum speedup from
the distributed architecture.

Distributed platforms can be heterogeneous in two dif-
ferent ways. First, by featuring heterogeneous computing
units inside the nodes, a feature that is expected to become
mainstream for HPC systems in a near future and is a
main motivating factor for DAGuE existence. Second, by
gathering nodes of differing computing capacity, as is often
the case in desktop grids computing, but is not typical of
HPC. Because of the hardware features of our test machine,
to present 8 nodes scalability, we were forced to use the

•  The PCI bus is a critical resource shared between 
different components 

•  Scheduling cannot be done independently 



Distributed GPUs 

Table I
IMPACT OF CONCURRENT ACCESSES BETWEEN GPU AND NIC ON THE

BANDWIDTH (GB/S) WITH A TILE SIZE OF 384

Perturbation none remote die same die interleave
Network - 11.533 11.363 11.001

GPU 0 push 29.250 26.497 12.897 25.919
GPU 1 push 21.509 21.580 11.457 21.553
GPU 0 pull 13.746 12.897 11.366 12.060
GPU 1 pull 13.089 11.457 9.636 10.767

of performing concurrent accesses to the memory and the
PCI-Express bus with GPU accelerators and HPC network
interfaces. In these experiments, two Dancer nodes were
added an extra GPU (Nvidia 8600GT). The NetPIPE ping-
pong benchmark has been modified to spawn two extra
threads, in order to stress the memory and PCI-E subsystems
with concurrent CUDA memory traffic to and from a GPU.
When no Infiniband interference is taking place, the GPU
memory copy aggregated bandwidth is over 50Gb/s pushing
data to the GPUs and 26.7Gb/s retrieving data. When the
Infiniband traffic is pinned to a different socket from the one
hosting the GPU threads, the GPU aggregated bandwidth
is slightly reduced to 48Gb/s and 24.3Gb/s. The worst
case scenario is to pin both Infiniband operations and GPU
traffic to the same socket, which reduces the performance to
33.1Gb/s and 20.9Gb/s. The Infiniband bandwidth is almost
unaffected. When the accessed memory is spread on all
NUMA banks (numactl interleave mode), the performance
penalty is comparable to the remote die setup; on the Dancer
system, all the PCI-Express buses are separated, therefore
the perturbations are mostly the consequence of memory
bank contentions. This setup mimics the floating network
thread of the DAGuE environment, demonstrating that, on
average, it avoids interference with the GPU operations.
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tile size, for a problem size of 34560 (Dancer cluster, 4 nodes).

2) Mixed Hardware Types: On heterogeneous system that
includes many different components, like Dancer, tuning the

size of the tiles on which the DAG will executed impacts
several parameters, from the speed of the BLAS kernels
on the differing computing units, to the efficiency of the
network transfers. Figure 6 presents the performance of the
Cholesky factorization on a 4 node cluster, when varying
the tile size, for a fixed problem size of 34560. The CPU-
only experiment illustrates that the DAGuE framework is
flexible enough that the network and CPU efficiency are
unaffected by the tile size, hence the tuning can focus
on GPU efficiency only. The performance of the GPU
accelerators are indeed strongly dependent on the tile size.
On the Fermi cluster, the performance increases steeply
when growing the tile size up to 320, but remains constant
for larger tiles. On the Tesla cluster, the performance drops
when using tile sizes larger than 384 (due to unavailability
of multiple streams). Overall, DAGuE allows for a single
set of tuning parameters that performs adequately on all
the considered hardware of Dancer, even when the setup
is mismatched.
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Figure 7. Weak Scalability: performance of the Cholesky factorization as
a function of the number of nodes, with a problem size scaled accordingly
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3) Scalability: Figure 7 exhibits the weak scalability, i.e.,
the performance of the system when increasing both the
number of computing resources and problem size in order to
keep the workload per node constant. On platforms featuring
similar nodes (either all Tesla, all Fermi or all CPU), the
DAGuE runtime can harness the maximum speedup from
the distributed architecture.

Distributed platforms can be heterogeneous in two dif-
ferent ways. First, by featuring heterogeneous computing
units inside the nodes, a feature that is expected to become
mainstream for HPC systems in a near future and is a
main motivating factor for DAGuE existence. Second, by
gathering nodes of differing computing capacity, as is often
the case in desktop grids computing, but is not typical of
HPC. Because of the hardware features of our test machine,
to present 8 nodes scalability, we were forced to use the

•  4xTesla (C1060) 
•  4xFermi (C2050)  
•  8 cores / node 

•  Weak scaling 



Conclusion 
•  Hybrid programming (of dense LA) made easy(ier) 

•  Portability: inherently take advantage of all hardware capabilities 
•  Efficiency: deliver the best performance on tested algorithms 

•  Works well with Dense Linear Algebra with Direct Method 
•  Sparse? 
•  Branch and Bound? 
•  Iterative Method? 

•  Let different people focus on different problems 
•  Application developers on their algorithms 
•  System developers on system issues 


