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Heterogeneous Architecture:

» 14,336 Intel Xeon CPUs

- 7,168 Nvidia Tesla M2050 GPUs
« More than 100 racks

° 4.04 megawatts




—.,

Cetraro Workshop 2011 6/28/2011

Technology Demands new Response
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Technology Demands new Response
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Amdahl’s Law
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The 4 Horsemen of the Apocalypse: SLOW

» Starvation
- Latencies

» Overheads

- Waiting for Contention
resolution

courtesy of www.albrecht-durer.org
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Efficiency Factors

Starvation
> Insufficient concurrent work to maintain high utilization of resources

Latency
» Time-distance delay of remote resource access and services

Overhead

= Critical path work for management of parallel actions and resources
> Work not necessary for sequential variant

Waiting for contention resolution

= Delay due to lack of availability of oversubscribed shared resource



Efficiency Factors

« Starvation
o Insufficient concurrent work to maintain hj

- Latency
> Time-distance delay of regs



The Runtime System

A Game Changer
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Adaptive Mesh Refinement (AMR)

1.23e-137 009601
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Why Adaptive Mesh Refinement (AMR)

- From 31 Mar 2010 to 31 Mar 2011 at least
68,394,791 SU’s were dedicated on Teragrid to finite
difference based AMR applications (out of ~1.407
billion SU’s allocated) -- about 5% of runs

» Nearly all of the publicly available AMR toolkits use
MPI

- Strong scaling of AMR applications is typically very
poor

- ParalleX functionality fits nicely with the AMR
algorithm: global address space, “work stealing”,
arallelism discovery, dynamic threads, implicit
oad balancing
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Constraint based Synchronization for AMR

« Compute dependencies at task
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What’s ParalleX ?

- Active global address space (AGAS) instead of PGAS
- Message driven instead of message passing

- Lightweight control objects instead of global
barriers

- Latency hiding instead of latency avoidance

- Adaptive locality control instead of static data
distribution

- Fine grained parallelism of lightweight threads
instead of Communicating Sequential Processes
(CSP/MPI)

- Moving work to data instead of moving data to work
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The Runtime System - A Game Changer

Runtime system

= is: ephemeral, dedicated to and exists only with an application
= is not: the OS, persistent and dedicated to the hardware system
Moves us from static to dynamic operational regime

= Exploits situational awareness for causality-driven adaptation

= Guided-missile with continuous course correction rather than a fired
projectile with fixed-trajectory

Based on foundational assumption

> Untapped system resources to be harvested

> More computational work will yield reduced time and lower power
= Opportunities for enhanced efficiencies discovered only in flight

> New methods of control to deliver superior scalability
“Undiscovered Country” — adding a dimension of systematics
» Adding a new component to the system stack

= Path-finding through the new trade-off space
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HPX Runtime System Design

» Current version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model
= Active Global Address Space (AGAS)

= ParalleX Threads and ParalleX Thread
Management

= Parcel Transport and Parcel Management
» Local Control Objects (LCOs)
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HPX Runtime System Design

» Current version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model
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Main Runtime System Tasks

Manage parallel execution for application Starvation
- Delineating parallelism, runtime adaptive management of parallelism

= Synchronizing parallel tasks

= Thread scheduling, static and dynamic load balancing

Mitigate latencies for application Latencies
= Latency hiding through overlap of computation and communication

= Latency avoidance through locality management

> Dynamic copy semantic support

Reduce overhead for application Overheads

= Synchronization, scheduling, load balancing, communication, context
switching, memory management, address translation

Resolve contention for application Contention
= Adaptive routing, resource scheduling, load balancing
> Localized request buffering for logical resources
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Active Global Address Space

Global Address Space throughout the system

> Removes dependency on static data distribution

> Enables dynamic load balancing of application and system data

« AGAS assigns global names (identifiers, unstructured 128 bit integers to
all entities managed by HPX.

« Unlike PGAS allows mechanisms to resolving global identifiers into

corresponding local virtual addresses (LVA)

s LVAs comprise — Locality ID, Type of Entity being referred to and its local
memory address

> Moving an entity to a different locality updates this mapping.

s Current implementation is based on centralized database storing the
mappings which are accessible over the local area network.

= Local caching policies have been implemented to prevent bottlenecks and
minimize the number of required round-trips.

« Current implementation allows autonomous creation of globally unique
ids in the locality where the entity is initially located and supports
memory pooling of similar objects to minimize overhead



Thread Management

» Thread manager is modular and implements a work-queue
based management as specified by PX Execution model

- Threads are cooperatively scheduled at user level without
requiring a kernel transition

- Specially designed synchronization primitives such as
semaphores, mutexes etc. allow synchronization of HPX
threads in the same way as conventional threads

- Thread management currently supports several key modes
= Global Thread Queue
s Local Queue (work stealing)
> Local Priority Queue (work stealing)
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Parcel Management

Any inter-locality messaging is based on Parcels

> In HPX implementation parcels are represented as polymorphic objects
> An HPX entity on creating a parcel object sends it to the parcel handler.
» The parcel handler serializes the parcel where all dependent data is
bundled along with the parcel.

- At the receiving locality the parcel is received using the standard
TCP / IP prOtOC01S, Serialized Parcel De-serialized Parcel

» d
- The action manager de-serializes
the parcel and creates HPX threads

out of the specification

]
object




s 2

Cetraro Workshop 2011 6/28/2011

Exemplar LCO: Futures

- In HPX Futures LCO refers to an object that acts as a proxy for the
result that is initially not known.

- When a user code invokes a future (using future.get() ) the thread
can do one of 2 activities

» If the remote data /arguments are
available then the future.get()
operation fetches the data and the
execution of the thread continues

= If the remote data is NOT available

the thread may continue until it -
requires the actual value; then the
thread suspends allowing other
threads to continue execution. The
original thread re-activates as soon
as the data data dependency is
resolved

Note: Thread 1 is suspended

only if the results from locality 2

are not readily available. If results are
available Tread 1 continues to
complete execution.




First Results

Based on HPX — An exemplar implementation of ParalleX for
conventional systems
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Starvation: Non-uniform Workload

AMR Example Mesh Structure
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Starvation: Non-uniform Workload

2 Level AMR on a single processor

10

AMR Example M|
N 8

25

0.008 T 6

0.010

o
ot
/ b4 ——60sec

2 £ \
2 0.006 F g ——120 sec
=
€ \ I 180 sec
<
g \ ’
g 0.004 2

0.002 / 0
] 0 5 10 15

Computational Domain (Radius)

0.000 -—ﬁ—I—-Q—-I;

4 5 6 7 8 9
Computational Domain (Radius)

10 11




Cetraro Workshop 2011 6/28/2011

Starvation: Non-uniform Workload

Comparison of Non-uniform Workload
Executionin MPI and HPX
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The New Freedom
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Overhead: Load Balancing

Grain Size Sweep (0 Levels of Refinement)

Grain Size Sweep (4 Levels of Refinement)

Elapsed time [s]

Competing effects for optimal grain size: overheads vs. load balancing (starvation)



R RRRRRRRRRRRRRRRRRRRRA:

Cetraro Workshop 2011

Overhead: Load Balancing
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Optimal Grain Size
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Overhead: Threads

Execution Time [s] (1,000,000 PX Threads)
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Overhead: Threads

Number of PX-Threads Executed

Depending on the used grain size
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Scaling: AMR using MP| and HPX

Scaling of MPI AMR application
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Scaling: AMR using MP| and HPX

Scaling of HPX AMR application
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Performance: AMR using MP| and HPX

Wallclock time ratio MPI/HPX

(Depending on levels of refinement - LoR, pollux.cct.lsu.edu, 32 cores)
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ParallexX

A Cure for Scaling Impaired Parallel Applications ?



H

0 Workshop 2011 6/28/2011

ParalleX - Is it a Cure?

- Not completely sure yet

= Half way through

= Promising results on SMP systems

= First (promising) results on distributed Systems
» No code changes required!

 Current projects

= Custom hardware (FPGAs) accelerating systems
functionality

= Improving performance of AGAS, Parcel transport, ...
= Redefining I/O
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ParalleX - Is it a Cure?

- ParalleX execution model can be implemented

without adding significantly more overhead than
what MPI does

- Implicit load balancing for AMR simulations
based on finer grained parallelism highly
beneficial

 There are regimes and applications that can
benefit from this highly parallel model

- Runtime granularity control is crucial for
optimal scaling



