ParalleX

A Cure for Scaling Impaired Parallel
Applications

Hartmut Kaiser (hkaiser@cct.lsu.edu)

Cetraro Workshop 2011 6/28/2011

Heterogeneous Architecture:

» 14,336 Intel Xeon CPUs

- 7,168 Nvidia Tesla M2050 GPUs
« More than 100 racks

° 4.04 megawatts

—.,

Cetraro Workshop 2011 6/28/2011

Technology Demands new Response

10,000,000

LI
1,000,000 /‘
o
100,000
10,000
1,000

100 /
— o

e
10
/G -
- = /
*
1 __/ = Transistors (000) [

e Clock Speed (MHz)
4 Power (W)
@ Perf/iClock (ILP)

| 1 1
o
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb
Sutter, and Burton Smith

RN

Cetraro Workshop 2011 6/28/2011

Technology Demands new Response

10,000,000

1,000,000
100,000
10,000
1,000
100
/
10 .
> >
A/
- -
1 —/
> *
o
1970 1975 1980 1985 1990 199

Figure courtesy of Kunle Olukotun, Lance Hammond, Herb
Sutter, and Burton Smith

Systems

500

400

300

200

100

Architecture Share Over Time
1993-2010

MPP
Cluster

f sme
Constellations

l single Processor

06/1993
06/19594
06/1995

O~ SN MO<F W O~
o O O D DD OO0 O DD D
oo OO D DO OO0 0O 00O
i e B I O O O O O B |
Ty Ty T T T T e e T Ty e T e
W WD WD WD WD WD WD WD D WD WO D D
[om I o I o v o o N e o e e e e Y |
TOP500 Releases

06/2009
06/2010

! Others

R

Cetraro Workshop 2011 6/28/2011

Amdahl’s Law

1 Amdahl' s Law
20.00 _—
A
18.00 "
P / Parallel Portion
16.00 — L09%

(1-P)+

/ - T5%

N 14.00 90%
/ —— 95%

12.00
-Elu.un !/ -
. o L
- P: Proportion of parallel .00 / /f”
code 600 7 va
4.00
- N: Number of processors NEZsEn
0.00 |

Mumber of Processors

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Cetraro Workshop 2011 6/28/2011

The 4 Horsemen of the Apocalypse: SLOW

» Starvation
- Latencies

» Overheads

- Waiting for Contention
resolution

courtesy of www.albrecht-durer.org

Cetraro Workshop 2011 6/28/2011

Efficiency Factors

Starvation
> Insufficient concurrent work to maintain high utilization of resources

Latency
» Time-distance delay of remote resource access and services

Overhead

= Critical path work for management of parallel actions and resources
> Work not necessary for sequential variant

Waiting for contention resolution

= Delay due to lack of availability of oversubscribed shared resource

Efficiency Factors

« Starvation
o Insufficient concurrent work to maintain hj

- Latency
> Time-distance delay of regs

The Runtime System

A Game Changer

Cetraro Workshop 2011 6/28/2011

Adaptive Mesh Refinement (AMR)

1.23e-137 009601

Cetraro Workshop 2011 6/28/2011

Why Adaptive Mesh Refinement (AMR)

- From 31 Mar 2010 to 31 Mar 2011 at least
68,394,791 SU’s were dedicated on Teragrid to finite
difference based AMR applications (out of ~1.407
billion SU’s allocated) -- about 5% of runs

» Nearly all of the publicly available AMR toolkits use
MPI

- Strong scaling of AMR applications is typically very
poor

- ParalleX functionality fits nicely with the AMR
algorithm: global address space, “work stealing”,
arallelism discovery, dynamic threads, implicit
oad balancing

2

Cetraro Workshop 2011 6/28/2011

Constraint based Synchronization for AMR

« Compute dependencies at task

I, 1] [1 e T AT [T: . e
/ Instantiation time
| 2 / » No global barriers, uses constraint
] based synchronization
L 1] |1 A L] (1] [L. : :
« Computation flows at its own pace

L remote task creation/execution
time

£l |1
=

]
£l |1

>< >< >< » Message driven
- * Symmetry between local and

7
P I

f

What’s ParalleX ?

- Active global address space (AGAS) instead of PGAS
- Message driven instead of message passing

- Lightweight control objects instead of global
barriers

- Latency hiding instead of latency avoidance

- Adaptive locality control instead of static data
distribution

- Fine grained parallelism of lightweight threads
instead of Communicating Sequential Processes
(CSP/MPI)

- Moving work to data instead of moving data to work

Yy

Cetraro Workshop 2011 6/28/2011

The Runtime System - A Game Changer

Runtime system

= is: ephemeral, dedicated to and exists only with an application
= is not: the OS, persistent and dedicated to the hardware system
Moves us from static to dynamic operational regime

= Exploits situational awareness for causality-driven adaptation

= Guided-missile with continuous course correction rather than a fired
projectile with fixed-trajectory

Based on foundational assumption

> Untapped system resources to be harvested

> More computational work will yield reduced time and lower power
= Opportunities for enhanced efficiencies discovered only in flight

> New methods of control to deliver superior scalability
“Undiscovered Country” — adding a dimension of systematics
» Adding a new component to the system stack

= Path-finding through the new trade-off space

Cetraro Workshop 2011 6/28/2011

HPX Runtime System Design

» Current version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model
= Active Global Address Space (AGAS)

= ParalleX Threads and ParalleX Thread
Management

= Parcel Transport and Parcel Management
» Local Control Objects (LCOs)

R,

Cetraro Workshop 2011 6/28/2011

HPX Runtime System Design

» Current version of HPX provides the following
infrastructure on conventional systems as
defined by the ParalleX execution model

[]
= A C local memo erformance
Cthe process manager - ry P \ performance
gement counters monitor

= Paralle} ¥
AGAs
Manage Interconnect translation &
OO
= Parcel 1 0 <
= Local C{ 1
oy 5 §

parcel
handler

thread
manager

thread pool

R,

Cetraro Workshop 2011 6/28/2011

Main Runtime System Tasks

Manage parallel execution for application Starvation
- Delineating parallelism, runtime adaptive management of parallelism

= Synchronizing parallel tasks

= Thread scheduling, static and dynamic load balancing

Mitigate latencies for application Latencies
= Latency hiding through overlap of computation and communication

= Latency avoidance through locality management

> Dynamic copy semantic support

Reduce overhead for application Overheads

= Synchronization, scheduling, load balancing, communication, context
switching, memory management, address translation

Resolve contention for application Contention
= Adaptive routing, resource scheduling, load balancing
> Localized request buffering for logical resources

R,

Cetraro Workshop 2011 6/28/2011

Active Global Address Space

Global Address Space throughout the system

> Removes dependency on static data distribution

> Enables dynamic load balancing of application and system data

« AGAS assigns global names (identifiers, unstructured 128 bit integers to
all entities managed by HPX.

« Unlike PGAS allows mechanisms to resolving global identifiers into

corresponding local virtual addresses (LVA)

s LVAs comprise — Locality ID, Type of Entity being referred to and its local
memory address

> Moving an entity to a different locality updates this mapping.

s Current implementation is based on centralized database storing the
mappings which are accessible over the local area network.

= Local caching policies have been implemented to prevent bottlenecks and
minimize the number of required round-trips.

« Current implementation allows autonomous creation of globally unique
ids in the locality where the entity is initially located and supports
memory pooling of similar objects to minimize overhead

Thread Management

» Thread manager is modular and implements a work-queue
based management as specified by PX Execution model

- Threads are cooperatively scheduled at user level without
requiring a kernel transition

- Specially designed synchronization primitives such as
semaphores, mutexes etc. allow synchronization of HPX
threads in the same way as conventional threads

- Thread management currently supports several key modes
= Global Thread Queue
s Local Queue (work stealing)
> Local Priority Queue (work stealing)

R

Cetraro Workshop 2011 6/28/2011

Parcel Management

Any inter-locality messaging is based on Parcels

> In HPX implementation parcels are represented as polymorphic objects
> An HPX entity on creating a parcel object sends it to the parcel handler.
» The parcel handler serializes the parcel where all dependent data is
bundled along with the parcel.

- At the receiving locality the parcel is received using the standard
TCP / IP prOtOC01S, Serialized Parcel De-serialized Parcel

» d
- The action manager de-serializes
the parcel and creates HPX threads

out of the specification

]
object

s 2

Cetraro Workshop 2011 6/28/2011

Exemplar LCO: Futures

- In HPX Futures LCO refers to an object that acts as a proxy for the
result that is initially not known.

- When a user code invokes a future (using future.get()) the thread
can do one of 2 activities

» If the remote data /arguments are
available then the future.get()
operation fetches the data and the
execution of the thread continues

= If the remote data is NOT available

the thread may continue until it -
requires the actual value; then the
thread suspends allowing other
threads to continue execution. The
original thread re-activates as soon
as the data data dependency is
resolved

Note: Thread 1 is suspended

only if the results from locality 2

are not readily available. If results are
available Tread 1 continues to
complete execution.

First Results

Based on HPX — An exemplar implementation of ParalleX for
conventional systems

——],

Cetraro Workshop 2011 6/28/2011

Starvation: Non-uniform Workload

AMR Example Mesh Structure
/

[\

0.010

(]

T 0.006 \

=

s

g —8—0 LoR
% —o—1LoR
3 2 LoR

o
o
o
=

0.002 [\

0.000 +o—m—

4 5 6 7 8 9 10 11 12

Computational Domain (Radius)

RN,

Cetraro Workshop 2011 6/28/2011

Starvation: Non-uniform Workload

2 Level AMR on a single processor

10

AMR Example M|
N 8

25

0.008 T 6

0.010

o
ot
/ b4 ——60sec

2 £ \
2 0.006 F g ——120 sec
=
€ \ I 180 sec
<
g \ ’
g 0.004 2

0.002 / 0
] 0 5 10 15

Computational Domain (Radius)

0.000 -—ﬁ—I—-Q—-I;

4 5 6 7 8 9
Computational Domain (Radius)

10 11

Cetraro Workshop 2011 6/28/2011

Starvation: Non-uniform Workload

Comparison of Non-uniform Workload
Executionin MPI and HPX

0 -

0
w
E
—
£ ~+—HPX
I~
-2 MPI|

15

10

0o | !
0 0.1 0.2 0.3 0.4 0.5 0.6
Standard Deviation of Execution Time

for Single Data Point

6/28/2011

Cetraro Workshop 2011

The New Freedom

Size

1N

Gra

5
iy
re o

AR

e
AR
o

A
.4_:?
Ry

T B
RS 4
e

L

kg
AR

.
Al
Ak

i

T
O,

RO -

T

S
v,
ror

i)

ARSLE
AR

-1—.
7

AR
R
T,

by
R
oty

Ry

e e

vy

AT Y
SRR
AT
RAARABNRY
RERARARAN

R
o

v,
ATARACRA
Y

A

'3
AR
Y,
AR
RARERIRA
by ratrat ey
RO
SR
AR
T
FREN
ety
o

(=
-4.75e+00

Xy
X SORNAR
ALRCRANIRO
BRI
S
P
yay
A
AR ORAH
RARRTHANOR AR
>y .'_..4 0»«02‘(5._4 oy
AR
AR
Uy

A
L s ey
BB
Ty et ToN
BT,
AR
SRR
TAY
aqvA-.»cp
BUGERR

08
R
A
AR
R
RSB
BT
A,
AR ARAY
O
R
T,
QYRR AV RARRY

| =
-4.75e+00

e

Cetraro Workshop 2011 6/28/2011

Overhead: Load Balancing

Grain Size Sweep (0 Levels of Refinement)

Grain Size Sweep (4 Levels of Refinement)

Elapsed time [s]

Competing effects for optimal grain size: overheads vs. load balancing (starvation)

R RRRRRRRRRRRRRRRRRRRRA:

Cetraro Workshop 2011

Overhead: Load Balancing

6/28/2011

Optimal Grain Size

Grain Size SW

14
12
g 10)
w
£ 8
e
B g
w®
: - -
o 2 F)} —
| , // "””_"” e //
0 // |
L :
0 LoR v - |
1LoR L :
2 LoR .
3 LoR h
4 1LoR
Levels of
Refinement

-/ 20cores

,/‘ 30 cores
J

f’
¢ 40 cores

5LoR

012-14
b10-12
@m8-10
m6-8
mi-6
m2-4

/10 cores

Refinement)

Elapsed time [s]

Grain Size

Competing effects for optimal grain size: overheads vs. load balancing (starvation)

RN\

Cetraro Workshop 2011 6/28/2011

Overhead: Threads

Execution Time [s] (1,000,000 PX Threads)

120
100
= 80 Ous
E w3 58
' 7us
S 60 ‘ H
3 e 14515
%
w40 29us
\\ e 58S
\ e 11548
© NN~
%
0 T T T T T T

4 8 12 16 20 24 28 32 36 40 44 48
Number of OS Threads (Cores)

.

Cetraro Workshop 2011 6/28/2011

Overhead: Threads

Number of PX-Threads Executed

Depending on the used grain size

Execution Time [s] (1,0 : g
120 E
* \
100 2 ‘\
e
&
— 80 = \
P g
£ £ 2
; w : \
s | :
2 2
[J)
Ty ;- \
WA B
20 o

‘\\\ o 10 20 30 40 50
[Grain Size
S
0

0 4 8 12 16 20 24 28 32 36 40 44 48
Number of OS Threads (Cores)

— A

Cetraro Workshop 2011 6/28/2011

Scaling: AMR using MP| and HPX

Scaling of MPI AMR application

14

12 +—
—_ —o— 1 core
[J]
5 10 —
: —i— 2 cores
8
T 8 4 cores
[J]
N
S \
g \ —>—10 cores
S 6 — 5%
Eﬂ 20 cores
w© 4
a

5 | | | |

= — = —= 0— —u
0
0 1 2 3 4 5 6 7 8
Levels of AMR refinement

————:

Cetraro Workshop 2011 6/28/2011

Scaling: AMR using MP| and HPX

Scaling of HPX AMR application
14
. | |
Scaling of MPI AN I —
14 12
Ty —o—1 core
12 =~ g 10
- —— 2 cores
. 2
() 8 —X
= - e
S 10 E e — 4 cores
©
E § 6 —>—10 cores
3 2
T!u \ & 20 cores
£ \u— 8 4
g 6 ———— a
g 2 u m— —T1 0 |
s 4
wv
| | 0
2 O— — — 0 1 2 3 4 5 6 7 8
Levels of AMR refinement
0
0 1 2 3 4 5 6 7 8
Levels of AMR refinement

— 2

Cetraro Workshop 2011 6/28/2011

Performance: AMR using MP| and HPX

Wallclock time ratio MPI/HPX

(Depending on levels of refinement - LoR, pollux.cct.lsu.edu, 32 cores)

=1)

H O LoR
m1LloR

m2LoR
H 3 LoR

Wallclock time ratio MPI/HPX (HPX

1 core 2 cores 5 cores 10 cores 20 cores 30 cores

Number of cores

ParallexX

A Cure for Scaling Impaired Parallel Applications ?

H

0 Workshop 2011 6/28/2011

ParalleX - Is it a Cure?

- Not completely sure yet

= Half way through

= Promising results on SMP systems

= First (promising) results on distributed Systems
» No code changes required!

 Current projects

= Custom hardware (FPGAs) accelerating systems
functionality

= Improving performance of AGAS, Parcel transport, ...
= Redefining I/O

Cetraro Workshop 2011 6/28/2011

ParalleX - Is it a Cure?

- ParalleX execution model can be implemented

without adding significantly more overhead than
what MPI does

- Implicit load balancing for AMR simulations
based on finer grained parallelism highly
beneficial

 There are regimes and applications that can
benefit from this highly parallel model

- Runtime granularity control is crucial for
optimal scaling

