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Outline

• The exascale challenge

• The CRESTA project

• The CRESTA approach to exascale
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Current Challenges in Supercomputing

• We are at a complex juncture in the history of supercomputing

• For the past 20 years supercomputing has “hitched a lift” on the 
microprocessor revolution driven by the PC

• Hardware has been surprisingly stable 

• The programming models for these systems were very similar

• But now we have a problem ...
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Lindgren at PDC

• 16 cabinet Cray XE6, 36,384 cores, 305 TF TPP

• 2 x12 core AMD Opteron 2.1 GHz CPUs, 32 GB RAM  
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The many-core future
• Hardware is leaving many HPC users and codes behind

• Clock rate is going down, number of cores is increasing
• Memory per core is going down

• Majority of codes scale to less than 512 cores
• These will soon be desk-side systems

• Less than 10 codes in EU today will scale on capability systems with 
100,000+ cores
• Lindgren already has more than 36,000 cores
• Germany’s Jugene system already has 294,912 cores

• Many industrial codes scale very poorly – some codes will soon find a 
laptop processor a challenge!

• Much hope is pinned on accelerator technology
• But this has its own set of parallelism and programming challenges
• Many porting projects to GPGPU have taken much longer than expected
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Where next for supercomputing?

• Currently we are in the single petaflop age
• Rank 1 in Top 500 June 2011 has 8 PF

• Systems today are already very difficult to program and run
• 100s of thousands of cores (K: 540k)
• Massive power requirements

• Today we use around 3 MW (K: 10 MW)

• Many codes simply don’t scale beyond a few thousand cores

• And yet we’re talking about how to reach exascale by 2018/19 …
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Shooting for an exaflop

(With thanks to top500.org)
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What are the challenges?

• DARPA conducted a study on exascale hardware in 2007

• Objective: understand the course of mainstream technology and 
determine the primary challenges to reaching 1 Exaflop by 2015, 
or soon thereafter

• They concluded the four key challenges were:
• Power consumption
• Memory and storage
• Application scalability
• Resiliency

• See
• http://www.darpa.mil/ipto/personnel/docs/ExaScale_Study_Initial.pdf
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1: The power problem

• The most power-efficient microprocessors available today deliver 
~450 Mflops/W on Linpack (K: 824 Mflops/W)
• ie ~2.2 MW per petaflop/s … or 2.2GW per exaflop/s
• Excluding cooling which adds 20-100% to the power draw

• … clearly, we have to do better!
• DARPA goal: 50 Gflops/W in 8 years
• 100x improvement

• But even then 
• That still equates to a 20MW computer
• A number of US labs are currently putting

in 30-40MW machine room power supplies

Forsmark: 3.2 GW
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Memory and power
• Memory bandwidth has increased ~10x over the past decade

• The energy cost/bit transferred has declined by 2.5x

• … energy cost of driving the memory at full bandwidth has risen 
4x

• Memory DIMMs can’t provide bandwidth at acceptable energy 
costs

• And today’s applications use more memory than ever before
2000                                                 2010
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2: Memory performance

• Over the past 30 years DRAM density has increased ~75x faster 
than bandwidth

• … memory bandwidth is the limiting factor in future designs

• Novel memory technologies needed :
• phase-change memory, holographic memory, graphene …

1995                                               2006
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3: Applications scalability

• Those codes with low communications overheads and which can 
exploit weak scaling do well:

Lattice Boltzmann – soft condensed matter
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3: Applications scalability (cont)

• … some do pretty well

Hybrid Monte Carlo – particle physics
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3: Applications scalability (cont)

• … but most are disappointing
• this behaviour is caused by the overheads of global communications
• Applications scale only when communications are highly infrequent, 

or local Lattice Boltzmann – biophysics
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3: Applications scalability (cont)

• Users, especially in chemistry and engineering, are locked-in to 
poorly-scaling third-party codes

• Summary: widespread need for good software engineering and 
parallel techniques

• These are very
bad results …

• And surprisingly
common
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3. Applications scalability summary

• Strong versus weak scaling
• Weak scaling (problem size varies with machine concurrency) has been 

the mainstay of parallelism for 30 years
• Strong scaling (scaling with a fixed problem size) has been hard to find

• For some applications there is no more weak scaling because the 
system being studied is already large enough
• Example: classical molecular dynamics for many chemistry applications 

only requires 100 - 1000 molecules

• An even larger set is constrained by algorithmic complexity
• There is simply not enough concurrency in the algorithm
• Modern hardware – multicore and GPGPUs – are cruelly exposing this

• The numerical core (and probably much more) of many applications
will have to be rewritten to achieve exascale performance

AHS 2011 16



4: Resiliency

• An Exaflop machine is likely to have ~1 million processors

• If each processor had a lifetime of 10 years (unlikely)

• … then the machine will have a MTBF of ~5 minutes!

• We therefore have to be able to operate it in a way which is 
resilient to single-node failures

• Unfortunately, most scientific applications use synchronous 
algorithms

• … which would halt when something blocks the data flows

• Fault tolerance is not a new problem
• von Neumann considered this in detail as early computers failed 

often

• Much work is being done today in this area
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International Exascale Software Project

• IESP is a CS-orientated research project investigating how to 
build an exascale computer

• EESI is a European project working cloesely with IESP
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Outstanding research priorities
• systems software

• operating systems:  fault-tolerance, collective OS services, power management, hierarchy management …
• runtime systems: heterogeneity, load balancing, fault-tolerance, dynamical resource management …
• I/O systems: integration of emerging storage devices, embed I/O into programming models …
• systems management: resource control & scheduling, security, integration and test …
• external environments: linking to remote resources …

• development environments
• programming models: support for heterogeneous nodes, HPC interoperability, fault-tolerant MPI …
• frameworks: data layouts, fault resilience, inter-component coupling …
• compilers: MPI-aware compilers, compiler support for hybrid programming, power-aware compilers …
• numerical libraries: asynchronous algorithms, architectural transparency, power-aware …
• debugging tools: categorical assimilation, support for node heterogeneity, scalability …

• applications
• algorithms:  intra/inter-node scaling, fault resilience, heterogeneity, strong scaling …
• data analysis and visualisation: integration with simulation, workflows, data extraction …
• data management: scalable data-mining, new database technologies, search & query tools …

• crosscutting activities
• resilience: techniques for saving/restoring state, MPI replacement, fault-oblivious software …
• power management:  node-level OS management, power-aware libraries etc …
• performance optimization: heterogeneity, hybrid programming, enhanced concurrency …
• programmability: new programming models, new runtime models, new compiler support …
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IESP recommendations

• IESP strongly advocates a co-design model
• The software and hardware are developed in parallel

• Backed by aspiration pull and technology push
• Global challenges make the case … but the codes are too immature
• Technology push is not enough

• Politically the cost is too high, too few companies will benefit
• Technically, there are many potential hardware routes … and many likely 

dead-ends

• Co-design vehicles
• Applications which are scientifically sound with the potential to scale 

provide development paths 
• … while global challenge codes develop in parallel
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Parallel computing today

• The programming model is one of a set distinct memories 
distributed over homogeneous microprocessors
• Each microprocessor runs a Unix-like OS 

• Data transfers between the processors are managed explicitly by 
the application

• Almost all programs are written in sequential Fortran or C

• They use MPI (Message Passing Interface) for data transfers 
between nodes/microprocessors

• Some applications which exploit parallel threads on each 
microprocessor use a hybrid model
• Shared memory on the microprocessor, distributed memory outwith
• This holds promise for many applications, but is still rare
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Parallel computing today (cont)

• (Like the OS) few mathematical algorithms have been designed with 
parallelism in mind
• … the parallelism is then “just a matter of implementation”

• This approach generates much duplication of effort as components 
are custom-built for each application
• … but the years of development and debugging inhibits change and 

users are reluctant to risk a reduction in scientific output while rewriting 
takes place

• We may be close to a “tipping point”
• Without fundamental algorithmic changes progress in many areas will be 

limited

• This doesn’t just apply to exascale
• Some codes will soon fail to scale on an 8 or 16-core laptop
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Bye bye homogeneity

• Today most HPC facilities are homogeneous
• perhaps with specialised processors for peripheral functions, eg I/O

• Even if the nodes are compound, the components are separate 
with separate programming models
• eg. microprocessors with attached FPGA

• Microprocessors will increasingly be built from disparate 
components: “normal” core, GPGPU, SIMD Array
• With a mix which may vary within a machine

• … somehow, that mix will have to be controlled to give optimal 
performance
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What is Europe doing in exascale?

• Initially funded a small project – EESI – to engage with IESP
• Bringing all European players together

• European Commission have recently funded three exascale
research projects – initial total funding of €25 million over three 
years
• Projects start 1st October 2011 – currently negotiating contracts

• CRESTA – Collaborative Research into Exascale Systemware, 
Tools and Applications

• 3 year project, 13 partners, €12 million costs, €8.5 million funding
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CRESTA
• CRESTA has a very strong focus on exascale software challenges

• Uses a co-design model of applications with exascale potential 
interacting with systemware and tools activities

• The hardware partner is Cray - following hardware trends closely

• Applications represent broad spectrum from science and engineering
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Application Grand challenge Partner responsible

GROMACS Biomolecular systems KTH (Sweden)

ELMFIRE Fusion energy ABO (Finland)

HemeLB Virtual Physiological Human UCL (UK)

IFS Numerical weather prediction ECMWF (International)

OpenFOAM Engineering EPCC / HLRS / ECP

Nek5000 Engineering KTH (Sweden)



Partnership

• Consortium has
• Leading European HPC centres

• EPCC, HLRS, CSC, PDC 
• A world leading vendor

• Cray
• World leading tools providers

• TUD (Vampir), Allinea (DDT)
• Exascale application owners and specialists

• ABO, JYU, UCL, ECMWF, ECP, DLR, KTH

• CRESTA and its two partner projects are the first 
exascale development projects funded by Europe
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CRESTA key principle

• Some problems at exascale
require incremental solutions

• Some problems at exascale
require a disruptive approach

• CRESTA will compare and 
contrast different approaches

• This is particularly true for 
applications which are at the 
limit of scaling today

• What we learn at the exascale
will help codes scale at the peta-
and tera-scales.
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CRESTA development model
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Programming environments

Cresta provides support in all phases of the application 
lifecycle:

• Programming models that allow the construction of efficient, 
yet portable, applications

• Advanced compilation techniques and adaptive runtime 
environments

• Online and offline debugging

• Performance analysis
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Programming Models
• Applications need to exploit every bit of parallelism:

• Message passing (e.g. MPI)
• Shared memory parallelism (e.g. OpenMP)
• Vector and other instruction level parallelism
• Accelerators (on-chip and over network)

• Cresta will explore hybrid programming models that allow a smooth 
evolution of the co-design codes. 
• Starting point will be MPI, OpenMP, PGAS

• Pragmatic approach: Markup framework
• Identify and characterize parallelism in the application (programmer or 

automatically)
• Include performance hints 
• Direct compiler and runtime systems
• Feed back to OpenMP standardization
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Compiler and runtime systems

• Auto-tuning
• Develop a domain specific language for the expression of auto-tuning
• Address code transformations, algorithmic choices,  and runtime 

tuning

• Adaptive runtime system
• Dynamically define or change task/hardware mapping
• Support auto-tuning
• Feedback loop from performance analysis tools

• Compiler framework
• Assess different compiler frameworks
• Integrate auto-tuning
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Performance Analysis and Debugging

• Measure relevant performance data
• Little emphasis so far on network performance

• Efficient data collection
• Balance dynamically coarse- and fine-grained data collection
• Manage potentially enormous amounts of data

• Analysis and visualization
• Automatic analysis techniques to guide the user
• Expert systems and machine learning techniques

• Debugging
• Heterogeneous, dynamic debugging
• Runtime error correction
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Example: Dynamic feedback to adaptive runtime 
system
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Use of data mining and machine learning techniques to 
drive “intelligent” and automated performance analysis

OS-RT, Syscalls

PDC-RT
libmonitor + MPI profiling 

interface

Application code

PDC-MON

papiex-tracing

PapiEvent sources

PDC-
PerfAnalysis

Perf-
DB

PerfMiner

MPI



CRESTA objectives

• Main goal is to develop techniques and solutions which address 
the most difficult challenges that computing at the exascale can 
provide 

• Success metrics by 2014
• Co-design Applications

• Co-design applications tested successfully on leading-edge petascale
platforms and delivering previously unattainable simulations on those 
platforms

• Roadmap to achieving application exploitation of exascale platforms
• Systemware

• Integrated CRESTA software stack successfully tested on petascale
platforms

• Co-design application simulations exploiting the CRESTA software stack to 
demonstrate massive and previously unattained scalability, reliability and 
usability

• Roadmap to integrated CRESTA software stack on exascale platforms, 
reviewed by the Scientific Advisory Board
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Conclusions

• We are at a fascinating point in supercomputing
• The multi core revolution is posing complex questions
• These questions span hardware, software and environmental issues

• But …
• If we can build exascale systems the benefits could be enormous
• We could simulate climate, molecules, vehicles in greater detail than 

ever before
• We could use modelling and simulation to drive economic growth 

through better products and services

• If we’re going to do this we need to invest more heavily than ever 
before in algorithms, software, systemware and hardware 
research

• GPGPUs and other accelerators are only part of the answer

• It’s a highly parallel future!
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