Energy efficiency in reservationbased large scale distributed systems

Laurent Lefèvre, Anne-Cécile Orgerie INRIA RESO Project-Team Ecole Normale Supérieure of Lyon - Université de Lyon

laurent.lefevre@inria.fr

HPC Workshop, Cetraro, June 27, 2011

Energy : 1st challenge for large scale systems (datacenter, grids, clouds, internet)?

- Future exascale platforms -> systems from 20 to 100MW (current 4-6 MW – 10 MW for Kei)
- How to build such systems and make them energy sustainable/responsible ?
 - Hardware can help (component by component)
 - Software must be adapted to be scalable but also more energy efficient
 - Usage must be energy aware

Between incentive and reality :

2010 : record year in CO2 emission : 30.6 Gigatons (+5% previous record in 2008) IEA

44% coal - 36% petrol - 20% natural gas

Temperature increasing (2°C – 2100) -> 4°C (50% chance – 2100)

We are part of climate changing ! · Or at least of enormous electricity usage **Cloud Computing** CO₂ As IT users/designers CO2 CO2 CO_2 CO₂ 2007 electricity consumption, Billion kwH US 3923 Indirect Emissions China 3438 Use Russia 1023 Japan 925 Server Farms Telecoms Data Centres Proxies Infrastructure Cloud computing 662 Web Servers India 568 Germany 547 PCs. Monitors and Canada **Telecoms Devices** 536 GREENPEACE France 447 Brazil 404 UK. 345

3000

4000

5000

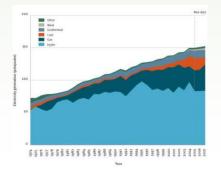
• « Greenpeace reports 2010-2011 »

1000

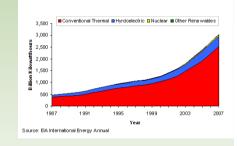
2000

0

Because it is (intensively) used !


- OK results maybe not very accurate, but estimations...
- Seems exact :
 - 200 M emails / minute
 - 700 000 google request per minute
 - 48 hours of youtube video per minute

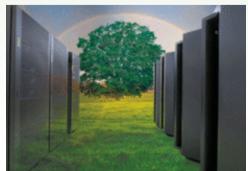
Power demand and Green IT


- IT 2-5% of CO2 emissions
- Green It → reducing electrical consumption of IT equipments - CO2 impact depends on countries
- Focus on usage : fighting un-used/overprovisioned plugged resources

China's Electricity Generation by Type, 1987-2007

The 4 loops issue

- **Usage loop** : hardware , applications & services energy usage. What is the impact of my application to energy consumption ?
- Infrastructure Loop : embedding into the models the infrastructure energy cost (air/water/free/un cooling). What is the impact of my environment to infrastructure consumption ?
- Life cycle loop : from production, usage to destruction (recycling)
 : What is the energy cost of my IT during its whole life?
- Human loop : add the human factor around the precedent loop. How to keep the world « happy » while reducing energy usage? ②
- The holy Grail : a model and frameworks with the 4 loops inside
- This apply to all kind of products : food (local apple vs foreign bananas), cars (prius vs hummer)... etc...
- But with IT it should be easier/quantifiable... hum.. not yet...


Towards Energy Aware Large Scale Systems

How to decrease the energy consumption without impacting the performances?

- How to understand and to analyze the usage and energy consumption of large scale platforms?
- How to monitor lively such usage from pico to large scale views?
- How to design energy aware software frameworks ?
- How to help users to express theirs Green concerns and to express tradeoffs between performance and energy efficiency ?

Green-IT Leverages

- Shutdown : reducing the amount of powered unused resources
- Slowdown : adapting the speed of resources to real usage
- **Optimizing** : improving hardware and software for energy reduction purpose (i.e. energy aware libraries). Adapt software to green hardware.
- **Coordinating :** using large scale approaches to enhance green leverages

Explosion of (uncoordinated) initiatives

For each domain

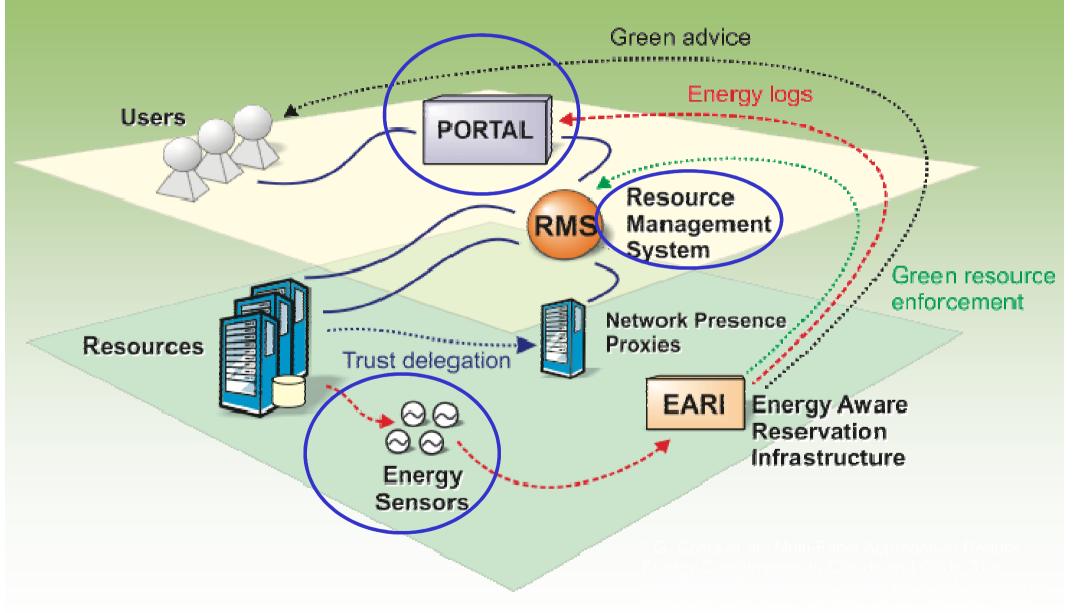
- Data centers/HPC : Green500, EU CoC, The Green Grid
- Storage : SNIA
- Networks : Green Touch / EEE

Our Methodology

- Proposing a generic model able to be derivated onto different scenario (Grids, Clouds, Networks)
- Designing software solutions for infrastructures
- Simulating and Validating at medium and large scale

Reservation-based systems

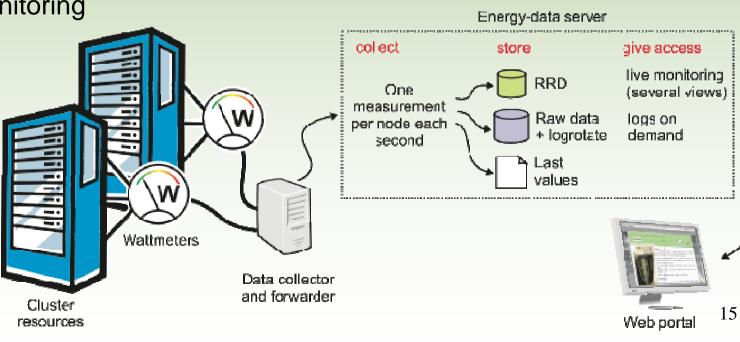
Every usage is based on a reservation (resources, duration, deadline):


- Reserving cpu in HPC and Grids
- Reserving Virtual machines time in Clouds
- Reserving Bandwidth in large transport of data
- Leverages:
 - Finding and powering the optimal number of resources in front of needs of applications
 - HPC and Grids : switching on/off physical components
 - Clouds : switching on/off VMs
 - Networks : lighting or switching off paths, nics, links, routers, LPI
 - Adapting « speed » (and consumption) to the need of applications/users
 - HPC, Grids : dvfs
 - Clouds : tuning, capping
 - Networks : adaptive link rate

The ERIDIS model

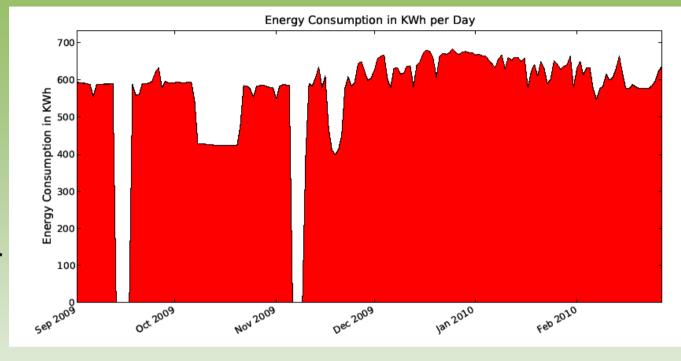
Energy-efficient Reservation Infrastructure for large-scale DIstributed Systems

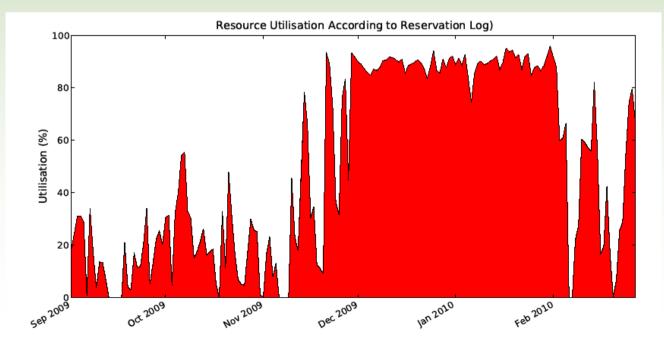
- Collecting and exposing : usage, energy profiling of applications and infrastructures
- Predicting usage of infrastructures
- Expressing and Proposing : to deal with tradeoffs between perf and energy, Green Policies
- Agregating resources reservations and usage in time and space
- Enforcing Green leverages : switch on/off or adapt performancs


The ERIDIS Framework

Collecting and exposing

- (Green) Grid'5000
 - French experimental testbed
 - 7400 cores
 - 10 sites
 - External energy sensors
 - Full site monitoring

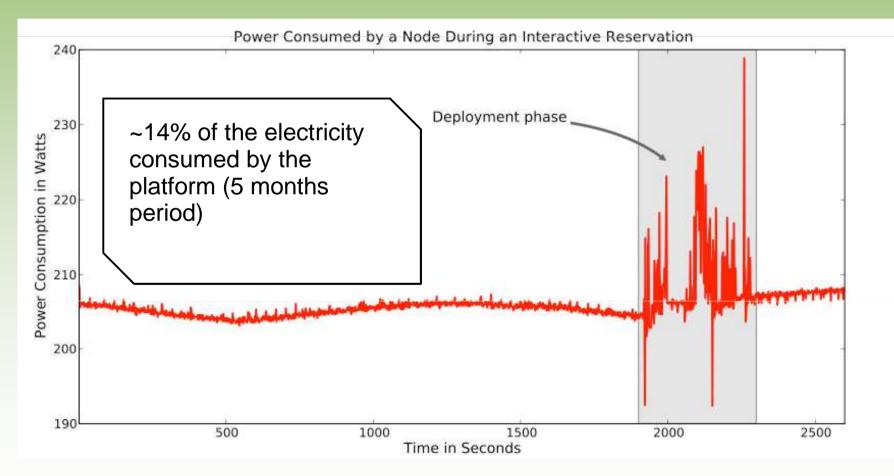



Electrical consumption / Usage

Periodicity of energy measurements:

One measurement per second for each equipment

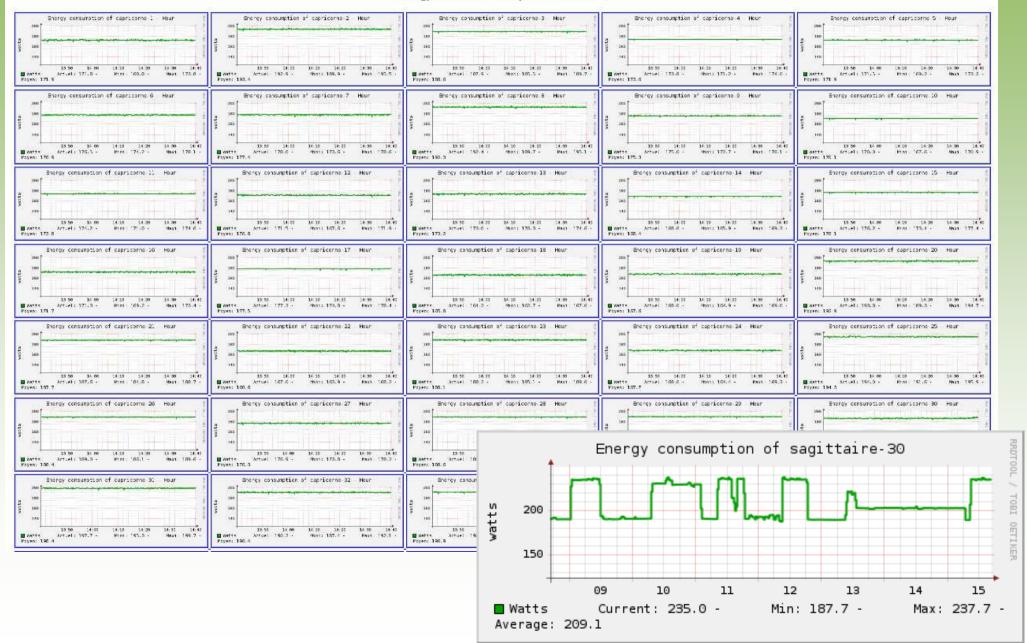
*


Example I : Profiling applications

Profiling the energy consumption of applications

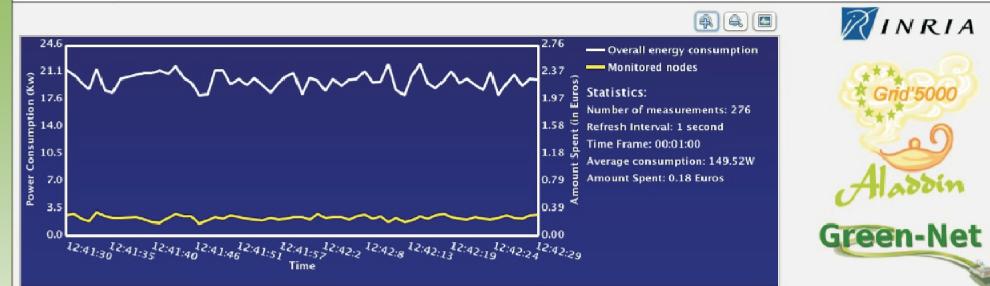
Example II : detecting anomalies

Improving frameworks/middleware and policies


Migration

Bad moment in energy during the migration

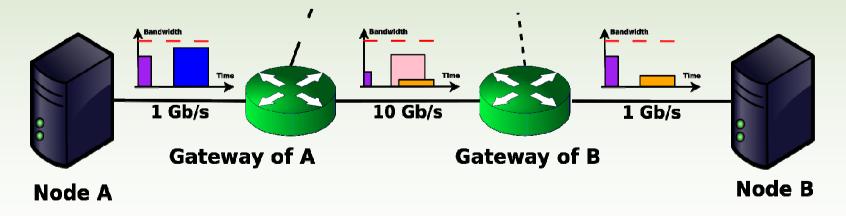
Large scale energy exposing


Energy Information of Lyon Grid5000 site

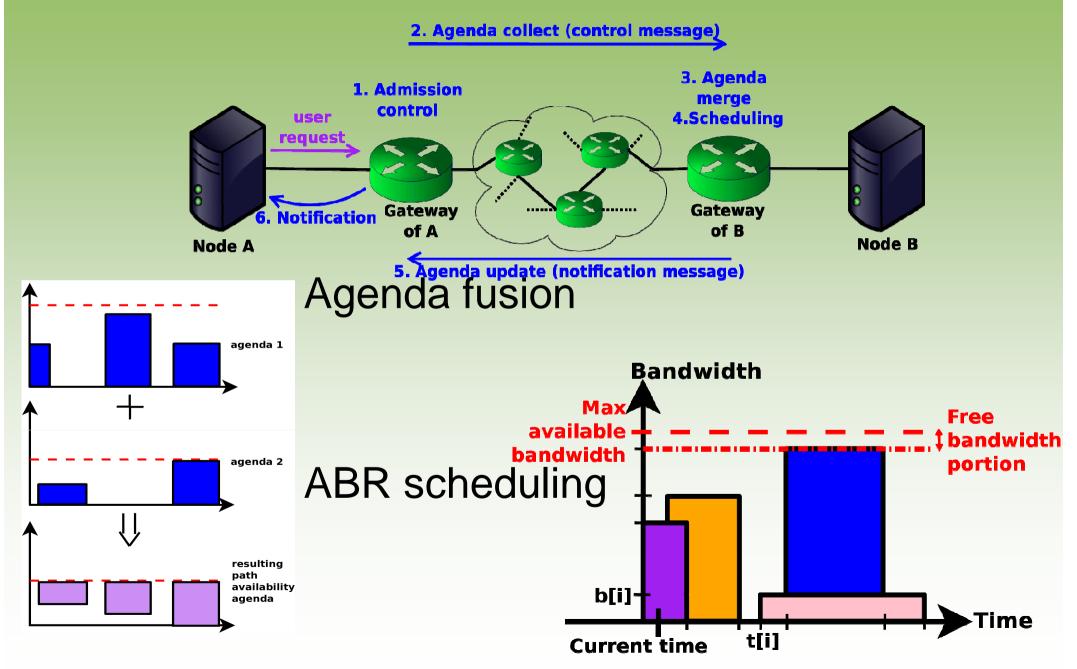
...

File View Help

Green-Net Demo 0.1b



Status of Resources:


74.81W 294.94W 221.42W 163. sagit-2 sagit-12 sagit-22 sagit 162.28W 276.10W 19.56W 274. sagit-3 sagit-12 sagit-23 sagit 253.17W 2257.72W 74.62W 100 sagit-4 sagit-14 sagit-23 sagit 290.73W 32.88W 203.23W 225. sagit-5 sagit-15 sagit-25 sagit 290.73W 32.88W 203.23W 225. sagit-6 sagit-15 sagit-25 sagit 1005W 84.01W 40.13W 298. sagit-6 sagit-16 sagit-26 sagit 103.75W 259.07W 285. sagit-27 sagit-7 sagit-18 sagit-28 sagit 120.1W 221.81W 369.3W 213. sagit-9 sagit-19 sagit-28 sagit-28 sagit-9 sagit-19 sagit-29 sagit-29 sagit-28 sagit-9 sagit-19 sagit-29 sagit-28 sagit-28	it-32 sagit-42 sagit-52 sagit-62 sagit-72 4.28W 55.37W 73.74W 189.81W 203.15W itt-33 sagit-43 sagit-53 sagit-63 sagit-73 06W 118.46W 220.34W 214.84W 133.10W itt-34 sagit-44 sagit-54 sagit-64 sagit-74 5.22W 87.75W 245.74W 199.51W 234.59W it-35 sagit-45 sagit-55 sagit-65 sagit-74 5.22W 87.75W 245.74W 199.51W 234.59W it-35 sagit-45 sagit-56 sagit-65 sagit-76 5.51W 142.07W 69.71W 142.63W 55.75W it-37 sagit-47 sagit-57 sagit-67 sagit-76 5.37W 214.58W 289.71W 95.29W 287.10W it-37 sagit-48 sagit-58 sagit-67 sagit-78 3.72W 12.82W 47.50W 244.97W 150.37W it-39	capric-2 241.65w capric-12 12 capric-32 130.27W capric-52 83.97W capric-52 180.02W capric-3 192.85W vV 186.97v capric-43 130.27W capric-53 226.64W capric vic-15 52.98W capric-25 14.16W ric-44 1.68W capric-54 40.37W capric vic-16 7.33W capric-26 261.25W capric-56 133 capric-56 17W capric-56 12W capric vic-18 246.45W capric-27 12.46W capric-44 13W capric-56 17W capric-56 17W capric vic-18 246.45W capric-28 246.45W r apric-49 3.6W capric-29 3.6W capric-10 13.88W 1. vic-49 3.6W capric-24 119.56W vic-49 3.6W sapric-41 119.56W	$ \begin{array}{c} 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \end{array} $
Resource on Resource	rce idle Resource off OReso	ource monitored	

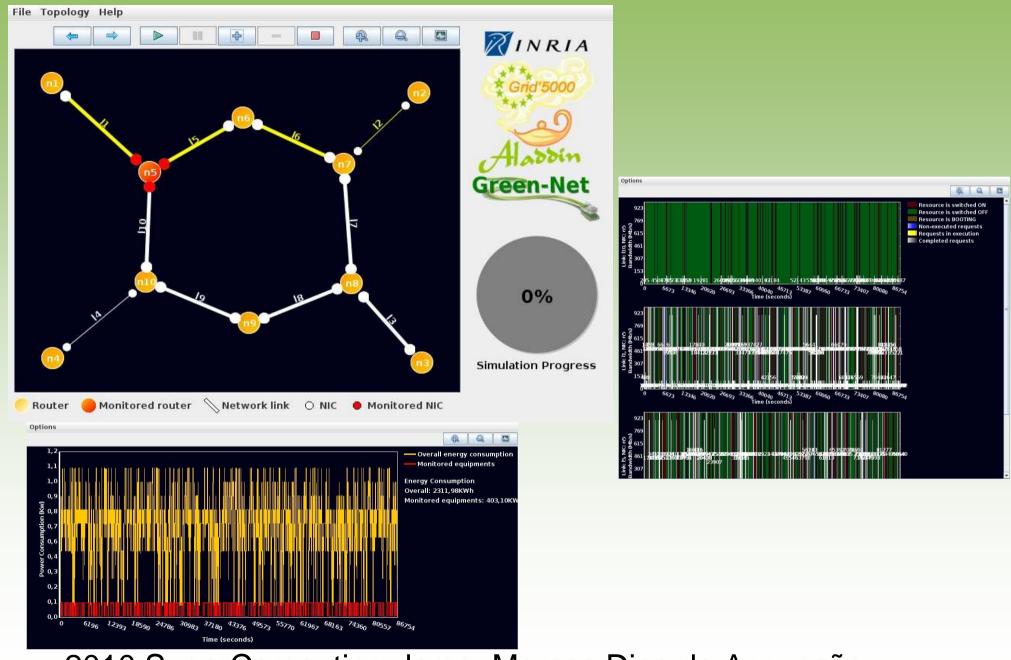
HERMES : High-level Energy-awaRe Model for bandwidth reservation in End-toend networkS

- Switching off unused parts of the network : NIC, routers, links
- Distributed network management
- Energy-efficient scheduling with reservation aggregation
- Usage prediction to avoid on/off cycles
- Minimization of the management messages
- Usage of DTN (Disruptive-Tolerant Network) for network management purpose

Hermes

Hermes results

 Network simulated: 500 nodes, 2 462 links. 	Component	State	Power
 Random Network (Molloy & Reed method) 	Chassis	ON	$150 \mathrm{W}$
All the nodes can be sources and	01185515	OFF	10 W
destinations.		$1 { m ~Gbps}$	$5 \mathrm{W}$
 Time to boot: 30 s.; time to shutdown: 1 s. 1 Gbps per port routers 	Port	$100 { m ~Mbps}$	$3 \mathrm{W}$
Tops per port routers		idle, 10 Mbps	1 W


• 31% workload : Energy consumption in Wh

Scheduling	No off	First	First green	Last	Last green	Green
Average	412 306	205 270	203 844	204 949	196 260	203 342
Standard deviation	2685	2 477	1 938	$2 \ 375$	2 695	$2\ 145$
Accepted volume (Tb)	2148	2 148	2 128	2 014	1 853	$2\ 149$
Cost in Wh per Tb	191.92	95.55	95.78	101.74	105.92	94.60

- Cost in Wh per Tb
- Compared to current case (no-off), HERMES could save 51%, 46% and 43% of the energy consumed depending on the workload

Workload	No off	First	First green	Last	Last green	Green
31%	191.92	95.55	95.78	101.74	105.92	94.60
46%	149.84	81.61	81.95	87.74	92.40	80.63
61%	130.45	74.73	74.91	80.09	84.63	73.79

Replayer

2010 SuperComputing demo, Marcos Dias de Assunção

Conclusions

- Big role for IT: Green IT and IT for Green
- Challenge : design energy proportional equipments and frameworks (computing, memory or network usage)
- Need to take out energy efficient models from the lab and put them in operationnal conditions
- Adress all levels from hardware to software production and usage (4 loops)
- Explore EE best effort environments

Thanks to Anne-Cécile Orgerie

Questions?

Laurent Lefèvre Laurent.lefevre@inria.fr

