New-Age Component Linking:
Compilers Must Speak Constraints

Alex Shafarenko
Compiler Technology & Computer
Architecture Group
University of Hertfordshire

HPC needs software engineeering

As mentioned by G.Joubert on day 1
Complexity of design is only mitigated by
decomposition and encapsulation

— Componentisation, local code

Efficiency requires flexible composition and
aggregation

— Global information for local decisions

Software crisis: software engineering
contradicts efficiency

Classical componentisation

 Computational and HPC s/w has been
componentised from the start

* SSPs of the 60s & 70s
— Collection of subroutines to be used together
— Linked by name
— Interfaces must match but are not checked

Linking by unification of addresses

* The logic perspective on Fortran and the Linker

— External ref in the calling subroutine: call x(...)
e Jdsub: Sub.name="“x”", Sub.addr =A. JSRA(...)

— Exportable address in the callee: subroutine x(...)
4 Fresh _addr =This.addr, This.name="“x", This.code=...

— Result: Sub is unified with This by the Linker
— BUT THIS logic IS HARDWIRED INTO IT

The “step forward”

Object style component technology
— Collection of classes/methods

— Hierarchies verified by type/class logic
A major limitation of the approach

— Based on type, hence must be provable

* Or dynamically checkable
* Not in itself adaptive, approximative and coalescable

— Still based on unification
Types = the agenda of the verification cohort
Still need logic, but different motivation

A new enlightened view

‘ (Conditional) Code
‘ Predicate(LVar1l,...,LvarN)

Compilers communicate external needs using
existential qualifiers

Compilers communicate exportable properties
using ground facts and universal quantifiers

Code and Predicate may share existential LVars.

— When such LVars are constrained, the code may be
specialised

(Annotated) Source

COMPILER

Example: one step beyond the basics

subroutine foo Subroutine sort(n,x)
ovll: sortPwr2(n,x,low,high)
do i=1, 100
1f(x(i)>1.0) x=1.0 ovl2: sortGen(n,x)
1f(x(i)<0.) x(i)=0.
enddo

call sort(100,x)
call sort(256,y)

Linker becomes Constraint Aggregator

Component Componera Com’onent Component
@ logic @ logic (] logic @ logic @

Linker becomes Constraint Aggregator

4)

Component Component Component Component
logic logic logic logic

Linker becomes Constraint Aggregator

4)

Component Component Component Component
logic logic logic logic

Linker becomes Constraint Aggregator

4)

Component Componera Com’onent Component
O logic O logic O logic O logic O

Linker becomes Constraint Aggregator

Linker becomes Constraint Aggregator

Component Componen Com onent Component
, logic Ioglc Io |c Ioglc

* Classical scheme: deploy+resolve becomes
— Aggregate
— Deploy?
— Resolve

And now to the main point

* A heterogeneous, HPC environment

— Several types of platform: multicore, GPGPU,
FPGA

— Plethora of performance-affecting properties

— Still need component encapsulation for software
engineering purposes

— Yet wish to “assemble” components intelligently

* i.e. significantly adapt, customise and tune up

 Hardware intelligence needed as well!

Extrafunctional aggregation
Pomponen q [Compo’en \‘ {%m’onen,\‘ [Con&nent \‘
Ioglc‘ @ Ioglc (] logic @ » logic @

Constraint Solver

[oo o ® o O]

e Evars: environment variables. Things like:

— Places, addresses, channels, power-limits,
memory capacity, throughput, cache structures...

— Cloud costs

The Scheme
omponent Compo' en m’onen Co nent
P Iogic’ | {’ IogiF +1 (logic ’1 gic ’1
-’l.
GPU,
mCore } VIRTUALISED HARDWARE

FPGA AR W A y VYV N W\ \ .v_‘

compilet \ ~ompiler compiler compiler
code code

Constraint Solver

Clusters

DEPLOYER

Difference between functional &
extrafunctional aggregation

* Functional aggregation
— Follows datapaths
— Data source asserts properties
— Data recipient imposes constraints
— Properties meet constraints -> LVars get assigned

e Extrafunctional aggregation
— Code specifies requirements by constraining EVars
— Virtual hardware imposes further constraints
e Sharing of the resources results in further constraints

— Aggregation NOT by unification,
* by constraint solving
* And — possibly — subsequent optimisation...

System Architecture

 Compiler:

— Input: component source (+ annot.?)

» Additionally, Phase 2: LVar bindings (complete), some
EVar bindings.

— Output:
 Phase 1: Predicates on interface LVars and on local EVars
* Phase 2: Binary code

System Architecture

* Virtual Hardware
— Input:
* Phase 1: compiler generated constraints on EVars
— Qutput:

* Phase 1: Fresh EVars for each component, to be
constrained by the compiler, bound EVars for
communicating platform properties

* Phase 2: Bindings of the EVars used for placement;
bindings of the EVars used by the compiler.

System Architecture

e Virtual hardware represents placement
algorithms as constraints

e Contains a constraint —limited optimiser
— Placement problem NP complete

— Heuristics
— Interface with the general constraint solver

Project ADVANCE

* Framework 7 STREP
— UH, U St. Andrews, UvA, Utwente
— SAP (Karlsruhe), Philips (Eindhoven) & 2 SMEs
 Aim: an intelligent software architecture for
heterogeneous systems
— Components communicate STATISTICAL properties
— Hardware is virtualised via a STATISTICAL model

— The statistics of data streams are gathered by
observation

The Achilles Heel of New Age Linking

* Traceability of control
— Constraint chaining requires causality

— Causality necessitates static control flow

e Otherwise input constraints do not mesh with output
constrains

— This has been the reason of slow uptake
— Mitigated by coordination

S-Net Coordinated Networks

- | =
Single-Input, Single-Output Each box a conventional program
Boxes Extremely small API

Type directed routing
Out of order split-mergers

First phase: CAL

* Constraint Aggregation Language

— Target representation: a coordinated streaming
network (S-Net)

— Nodes represent components

— Virtual hardware: distributed multithreaded
platform

— Component compilers speak CAL

CAL example

box MYBOX: (a,k) => (b), (c,d)

provided $a :=:
{Type(array, element($t), rank(2), shape($n,($m,nil)) }V$_,
$k:=: {value($kv), Type(int)}V $_
use
=> $nl1=%$n+1,
$base :=:
{Type(array, element($t), shape ($n1,($m,nil)))}; -- Clause 1

=> $b :=: $base V {rank(2)},
$d = $base V {rank(3)}; -- Clause 2

$kv > $$nthreads * 100
=>
$$TO :=: $m * log($m)/$$nthreads, $$T1 :=: 1, -- Clause 3

$kv <= $$nthreads* 100
=>
$$T1 :=: IM"(3/2); $$M1 :=: 0; - Clause 4
end

CAL vocabularies and protocols

 CALis alanguage in which logic protocols can
be expressed

— EVars and LVars for interacting with S-Net form a
vocabulary

— Vocabularies are not fixed... Depend on the
underlying architecture

— Constraint structures represent protocol
conventions

* Protocols connect components and solvers

Future Work

 Translation of CAL to a constraint solver
language
— Currently planned YICES

* Functional constraint aggregation (an
intelligent component interface)

— C compiler using EVars for optimisation
e Extrafunctional constraint aggregation

— Placement optimisations based on constraints

Conclusions

Compilers should speak symbolic properties
Linkers should in fact be constraint solvers
Dynamic linking => dynamic constraint solvers

Extrafunctional dictionaries should be
developed for classes of hardware

Large scale demonstrator required

