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HPC needs software engineeering

As mentioned by G.Joubert on day 1
Complexity of design is only mitigated by
decomposition and encapsulation

— Componentisation, local code

Efficiency requires flexible composition and
aggregation

— Global information for local decisions

Software crisis: software engineering
contradicts efficiency



Classical componentisation

 Computational and HPC s/w has been
componentised from the start

* SSPs of the 60s & 70s
— Collection of subroutines to be used together
— Linked by name
— Interfaces must match but are not checked



Linking by unification of addresses

* The logic perspective on Fortran and the Linker

— External ref in the calling subroutine: call x(...)
e Jdsub: Sub.name="“x”", Sub.addr =A. JSRA(...)

— Exportable address in the callee: subroutine x(...)
4 Fresh _addr =This.addr, This.name="“x", This.code=...

— Result: Sub is unified with This by the Linker
— BUT THIS logic IS HARDWIRED INTO IT



The “step forward”

Object style component technology
— Collection of classes/methods

— Hierarchies verified by type/class logic
A major limitation of the approach

— Based on type, hence must be provable

* Or dynamically checkable
* Not in itself adaptive, approximative and coalescable

— Still based on unification
Types = the agenda of the verification cohort
Still need logic, but different motivation



A new enlightened view

‘ (Conditional) Code
‘ Predicate(LVar1l,...,LvarN)

Compilers communicate external needs using
existential qualifiers

Compilers communicate exportable properties
using ground facts and universal quantifiers

Code and Predicate may share existential LVars.

— When such LVars are constrained, the code may be
specialised

(Annotated) Source

COMPILER



Example: one step beyond the basics

subroutine foo Subroutine sort(n,x)
ovll: sortPwr2(n,x,low,high)
do i=1, 100
1f(x(i)>1.0) x=1.0 ovl2: sortGen(n,x)
1f(x(i)<0.) x(i)=0.
enddo

call sort(100,x)
call sort(256,y)
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Linker becomes Constraint Aggregator

Component Componen Com onent Component
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* Classical scheme: deploy+resolve becomes
— Aggregate
— Deploy?
— Resolve




And now to the main point

* A heterogeneous, HPC environment

— Several types of platform: multicore, GPGPU,
FPGA

— Plethora of performance-affecting properties

— Still need component encapsulation for software
engineering purposes

— Yet wish to “assemble” components intelligently

* i.e. significantly adapt, customise and tune up

 Hardware intelligence needed as well!



Extrafunctional aggregation
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e Evars: environment variables. Things like:

— Places, addresses, channels, power-limits,
memory capacity, throughput, cache structures...

— Cloud costs
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Difference between functional &
extrafunctional aggregation

* Functional aggregation
— Follows datapaths
— Data source asserts properties
— Data recipient imposes constraints
— Properties meet constraints -> LVars get assigned

e Extrafunctional aggregation
— Code specifies requirements by constraining EVars
— Virtual hardware imposes further constraints
e Sharing of the resources results in further constraints

— Aggregation NOT by unification,
* by constraint solving
* And — possibly — subsequent optimisation...



System Architecture

 Compiler:

— Input: component source (+ annot.?)

» Additionally, Phase 2: LVar bindings (complete), some
EVar bindings.

— Output:
 Phase 1: Predicates on interface LVars and on local EVars
* Phase 2: Binary code



System Architecture

* Virtual Hardware
— Input:
* Phase 1: compiler generated constraints on EVars
— Qutput:

* Phase 1: Fresh EVars for each component, to be
constrained by the compiler, bound EVars for
communicating platform properties

* Phase 2: Bindings of the EVars used for placement;
bindings of the EVars used by the compiler.



System Architecture

e Virtual hardware represents placement
algorithms as constraints

e Contains a constraint —limited optimiser
— Placement problem NP complete

— Heuristics
— Interface with the general constraint solver



Project ADVANCE

* Framework 7 STREP
— UH, U St. Andrews, UvA, Utwente
— SAP (Karlsruhe), Philips (Eindhoven) & 2 SMEs
 Aim: an intelligent software architecture for
heterogeneous systems
— Components communicate STATISTICAL properties
— Hardware is virtualised via a STATISTICAL model

— The statistics of data streams are gathered by
observation



The Achilles Heel of New Age Linking

* Traceability of control
— Constraint chaining requires causality

— Causality necessitates static control flow

e Otherwise input constraints do not mesh with output
constrains

— This has been the reason of slow uptake
— Mitigated by coordination



S-Net Coordinated Networks

- | =
Single-Input, Single-Output Each box a conventional program
Boxes Extremely small API

Type directed routing
Out of order split-mergers



First phase: CAL

* Constraint Aggregation Language

— Target representation: a coordinated streaming
network (S-Net)

— Nodes represent components

— Virtual hardware: distributed multithreaded
platform

— Component compilers speak CAL



CAL example

box MYBOX: (a,k) => (b), (c,d)

provided $a :=:
{Type(array, element($t), rank(2), shape($n,($m,nil)) }V$_,
$k:=: {value($kv), Type(int)}V $_
use
=> $nl1=%$n+1,
$base :=:
{Type(array, element($t), shape ($n1,($m,nil)) )}; -- Clause 1

=> $b :=: $base V {rank(2)},
$d = $base V {rank(3)}; -- Clause 2

$kv > $$nthreads * 100
=>
$$TO :=: $m * log($m)/$$nthreads, $$T1 :=: 1, -- Clause 3

$kv <= $$nthreads* 100
=>
$$T1 :=: IM"(3/2); $$M1 :=: 0; - Clause 4
end




CAL vocabularies and protocols

 CALis alanguage in which logic protocols can
be expressed

— EVars and LVars for interacting with S-Net form a
vocabulary

— Vocabularies are not fixed... Depend on the
underlying architecture

— Constraint structures represent protocol
conventions

* Protocols connect components and solvers



Future Work

 Translation of CAL to a constraint solver
language
— Currently planned YICES

* Functional constraint aggregation (an
intelligent component interface)

— C compiler using EVars for optimisation
e Extrafunctional constraint aggregation

— Placement optimisations based on constraints



Conclusions

Compilers should speak symbolic properties
Linkers should in fact be constraint solvers
Dynamic linking => dynamic constraint solvers

Extrafunctional dictionaries should be
developed for classes of hardware

Large scale demonstrator required



