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HPC needs software engineeering

• As mentioned by G.Joubert on day 1

• Complexity of design is only mitigated by 
decomposition and encapsulation
– Componentisation, local code

• Efficiency requires flexible composition and 
aggregation
– Global information for local decisions

• Software crisis: software engineering 
contradicts efficiency



Classical componentisation

• Computational and HPC s/w has been 
componentised from the start

• SSPs of the 60s & 70s

– Collection of subroutines to be used together

– Linked by name

– Interfaces must match but are not checked



Linking by unification of addresses

• The logic perspective on Fortran and the Linker:

– External ref in the calling subroutine: call x(...)

• sub: Sub.name=“x”, Sub.addr =A. JSR A(...)

– Exportable address in the callee: subroutine x(...)

•  Fresh_addr =This.addr, This.name=“x”, This.code=...

– Result: Sub is unified with This by the Linker

– BUT THIS logic IS HARDWIRED INTO IT



The “step forward”

• Object style component technology
– Collection of classes/methods

– Hierarchies verified by type/class logic

• A major limitation of the approach
– Based on type, hence must be provable

• Or dynamically checkable

• Not in itself adaptive, approximative and coalescable

– Still based on unification

• Types = the agenda of the verification cohort

• Still need logic, but different motivation



A new enlightened view

• Compilers communicate external needs  using 
existential qualifiers

• Compilers communicate exportable properties 
using ground facts and universal quantifiers

• Code and Predicate may share existential LVars. 
– When such LVars are constrained, the code may be 

specialised

COMPILER

(Conditional) Code

Predicate(LVar1,...,LvarN)

(Annotated) Source



Example: one step beyond the basics

subroutine foo
....
do  i=1, 100

If(x(i)>1.0) x=1.0
If(x(i)<0.) x(i)=0.

enddo
call sort(100,x)
call sort(256,y)
....

 Sub: Sub.Name=“Sort”, 
Sub.P1=100\/ Sub.P1=256, 
Sub.P1=100 -> 
(0.<=Sub.P2<=1.)

Subroutine sort(n,x)
ovl1: sortPwr2(n,x,low,high)

...
ovl2: sortGen(n,x)

...

Pwr2(This.P1) -> Ovl=ovl1; 
Ovl=ovl2;

P,Q: (P<=This.P2<=Q) -> low=P, 
high=Q; low=-infty, 
high=+infty
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Linker becomes Constraint Aggregator

• Classical scheme: deploy+resolve becomes
– Aggregate

– Deploy?

– Resolve
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And now to the main point

• A heterogeneous, HPC environment

– Several types of platform: multicore, GPGPU, 
FPGA

– Plethora of performance-affecting properties

– Still need component encapsulation for software 
engineering purposes

– Yet wish to “assemble” components intelligently

• i.e. significantly adapt, customise and tune up

• Hardware intelligence needed as well! 



Extrafunctional aggregation
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VIRTUALISED HARDWARE

• Evars: environment variables. Things like: 
– Places, addresses, channels, power-limits, 

memory capacity, throughput, cache structures...

– Cloud costs

Constraint Solver



The Scheme
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Difference between functional & 
extrafunctional aggregation

• Functional aggregation
– Follows datapaths
– Data source  asserts properties
– Data recipient imposes constraints
– Properties meet constraints -> LVars get assigned

• Extrafunctional aggregation
– Code specifies requirements by constraining EVars
– Virtual hardware imposes further constraints

• Sharing of the resources results in further constraints

– Aggregation NOT by unification, 
• by constraint solving
• And – possibly – subsequent optimisation...



System Architecture

• Compiler:

– Input: component source (+ annot.?)

• Additionally, Phase 2: LVar bindings (complete), some 
EVar bindings.

– Output: 

• Phase 1: Predicates on interface LVars and on local EVars

• Phase 2: Binary code



System Architecture

• Virtual Hardware

– Input: 

• Phase 1: compiler generated constraints on EVars

– Output:

• Phase 1: Fresh EVars for each component, to be 
constrained by the compiler, bound EVars for 
communicating platform properties

• Phase 2:  Bindings of the EVars used for placement; 
bindings of the EVars used by the compiler.



System Architecture

• Virtual hardware represents placement 
algorithms as constraints

• Contains a constraint –limited optimiser

– Placement problem NP complete

– Heuristics

– Interface with the general constraint solver



Project ADVANCE

• Framework 7 STREP
– UH, U St. Andrews, UvA, Utwente

– SAP (Karlsruhe), Philips (Eindhoven) & 2 SMEs

• Aim: an intelligent software architecture for 
heterogeneous systems
– Components communicate STATISTICAL properties

– Hardware is virtualised via a STATISTICAL model

– The statistics of data streams are gathered by 
observation



The Achilles Heel of New Age Linking

• Traceability of control

– Constraint chaining requires causality

– Causality necessitates static control flow

• Otherwise input constraints do not mesh with output 
constrains

– This has been the reason of slow uptake

– Mitigated by coordination



S-Net Coordinated Networks

Single-Input, Single-Output 
Boxes

Type directed routing

Out of order split-mergers

Each box a conventional program

Extremely small API

...

...



First phase: CAL

• Constraint Aggregation Language

– Target representation: a coordinated streaming 
network (S-Net)

– Nodes represent components

– Virtual hardware: distributed multithreaded 
platform

– Component compilers speak CAL



CAL example

 
 
 
 
 
 
 
 

 
box MYBOX: (a,k) => (b), (c,d) 

 
provided $a :=: 

{Type(array, element($t), rank(2), shape($n,($m,nil)) )} \/ $_ , 

$k:=: {value($kv), Type(int)} \/ $_ 

use 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

end 

 
=> $n1=$n+1, 

$base :=: 

{Type(array, element($t), shape ($n1,($m,nil)) )}; -- Clause 1 

 
=> $b :=: $base \/ {rank(2)}, 

$d = $base \/ {rank(3)}; -- Clause 2 

 
$kv > $$nthreads * 100 

=> 

$$T0 :=: $m * log($m)/$$nthreads, $$T1 :=: 1; -- Clause 3 

 
$kv <= $$nthreads* 100 

=> 

$$T1 :=: $m^(3/2); $$M1 :=: 0; -- Clause 4 



CAL vocabularies and protocols

• CAL is a language in which logic protocols can 
be expressed

– EVars and LVars for interacting with S-Net form a 
vocabulary

– Vocabularies are not fixed... Depend on the 
underlying architecture

– Constraint structures represent protocol 
conventions

• Protocols connect components and solvers



Future Work

• Translation of CAL to a constraint solver 
language

– Currently planned YICES

• Functional constraint aggregation (an 
intelligent component interface)

– C compiler using EVars for optimisation

• Extrafunctional constraint aggregation

– Placement optimisations based on constraints



Conclusions

• Compilers should speak symbolic properties

• Linkers should in fact be constraint solvers

• Dynamic linking => dynamic constraint solvers

• Extrafunctional dictionaries should be 
developed for classes of hardware

• Large scale demonstrator required


