Resource Management and Green Computing

Mehdi Sheikhalishahi

University of Calabria

International Research Workshop On Advanced High Performance Computing Systems

Cetraro (Italy), June 27 - 29, 2011

Outline

- Relationship in Resource Management
- Resource Contention Metric for HPC Workloads
- Energy Efficient Consolidation Policies
- Experimental Results
- Conclusion

Resource Management

1111223

Policies

2525

Resource Contention Metric for HPC Workloads

- Resource Contention Def.
- Architecture, infrastructure dependent
- HPC Workloads as a case study
- Unit: quantitative

CPU	Cache	Memory	Ю	Net-in	Net-out
√	\checkmark	√	✓	~	1
			\checkmark	\checkmark	√
	\checkmark	\checkmark		\checkmark	1
			✓	\checkmark	1
	CPU ✓	CPU Cache ✓ ✓	CPU Cache Memory ✓ ✓ ✓ ✓ ✓ ✓	CPUCacheMemoryIO \checkmark	CPUCacheMemoryIONet-in \checkmark

Table 1. HPC Application Characteristics

Resource Contention Metric for HPC Workloads

 $RC(t) = \sum_{\forall n \in PhyNodes} RC(t, n) \qquad \qquad RC(t, n) = \sum_{\forall r \in resTypes} RC(t, n, r)$

Let JobsSchedOn(n,t) be the scheduled jobs on physical host n at time t

$$JS(t,n) = JobsSchedOn(n,t)$$

Let j.stresson be resources which job j puts stress on them Let j.resReq be resource requirements of job j in terms of capacity

$$resContFlg(t, n, r) = \begin{cases} 1, \sum_{\forall j \in JS(t, n)} (r \in j.stresson == True?1:0) > 1\\ 0, Otherwise \end{cases}$$

$$RC(t,n,r) = \begin{cases} \sum_{\forall j \in JS(t,n) \land r \in j.stresson} j.resReq[r], resContFlg(t,n,r) = 1\\ 0, & Otherwise \end{cases}$$

Effective Energy Aware Consolidation Policies

- Effective placement of jobs
- Two effective energy aware consolidation policies in terms of resource contention model
- Host selection policies of Haizea as a framework: score based system

EA Consolidation Base Model

$$\begin{aligned} Score(Job \; j, Time \; t, Node \; n) &= \sum_{\forall r \in j. stresson} ScoreRes(r) \\ \forall r \in j. stresson \; ScoreRes(r) &= \begin{cases} \sum_{\forall j s \in JS(t,n) \land r \in js. stresson \; js. resReq[r], \; resContFlg(r) = 1 \\ 0, & Otherwise \end{cases} \\ \forall r \in j. stresson \; resContFlg(r) &= \begin{cases} 1, (\sum_{\forall j s \in JS(t,n)} (r \in js. stresson == True?1:0)) \ge 1 \\ 0, \; Otherwise \end{cases} \end{aligned}$$

Simple Policy

Algorithm 2 NodeScoreAtTimeT(Job j, Time t, Node n)

```
Score \Leftarrow 0
for all r such that r \in j.stresson do
  Flag \Leftarrow False
  for all js such that js \in JS(t, n) do
     if r \in js.stresson then
        Flag \Leftarrow True
        break
     end if
  end for
  if Flag = True then
     for all js such that js \in JS(t, n) do
        if r \in js.stresson then
           Score \Leftarrow Score + js.resReq[r]
        end if
     end for
  end if
end for
return Score
```

Simple Policy

Algorithm 1 EAConsolidationPolicy(Job j, Time t)

 $NodesScore \Leftarrow empty dictionary$ for all n such that $n \in PhyNodes$ do $Score \Leftarrow NodeScoreAtTimeT(Job j,Time t,Node n)$ $NodesScore[n] \Leftarrow Score$ end for return Sort NodesScore according to values and return keys in order

Consolidation Policy Over Job Time Horizon

Algorithm 3 EATimeConsolidationPolicy(Job j, Time t)

```
NodesScore \Leftarrow empty dictionary
jobDuration \Leftarrow j.duration
for all n such that n \in PhyNodes do
  Score \Leftarrow 0
  time \Leftarrow t
  changePoints \leftarrow getChangePointsAfter(Time = time, until)
                                                                                   =
  jobDuration, node = n
  if len(changePoints) > 0 then
     while chp \Leftarrow changePoints.getNext() do
       tsDuration \Leftarrow chp - time
       Score \leftarrow Score + NodeScoreAtTimeT(j, time, n) * tsDuration
       time \Leftarrow chp
    end while
     if time < t + jobDuration then
       Score \leftarrow Score + NodeScoreAtTimeT(j, time, n) * (t + jobDuration -
       time)
    end if
     Score \Leftarrow Score/jobDuration
  else
     Score \leftarrow NodeScoreAtTimeT(j, time, n)
  end if
  NodesScore[n] \Leftarrow Score
end for
return Sort NodesScore according to values and return keys in order
```

Experimentations

Commodity cluster infra. as resource model

Workload archives from Parallel Workloads Archive

We synthetically generate job attributes by uniform distributions

HPC Char .: Prob./Resource	CPU Memory	CPU	Memory	Ю	Net-in Net-out	Net-in	Net-out
Compute-intensive: $\frac{1}{2}$	$\frac{6}{10}$	$\frac{4}{10}$	0	$\frac{1}{2}$	$\frac{4}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Data-intensive: $\frac{1}{6}$	$\frac{3}{10}$	0	$\frac{7}{10}$	$\frac{1}{2}$	$\frac{4}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Memory-intensive: $\frac{1}{6}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{4}{6}$	$\frac{1}{6}$	$\frac{1}{6}$
Comm-intensive: $\frac{1}{6}$	0	0	0	$\frac{1}{2}$	1	0	0

Table 2. HPC Characteristics distribution in workload trace

Configurations

- SDSC Blue Horizon from the Parallel Workloads Archive
- Computing Paradigms: cloud, HPC
- Consolidation Policies: greedy, SimpleEAConsolidation, EAConsolidationOverJobTimeHorizon
- Sites: With multi-instance type CPU 8, 16 number of cores per physical nodes
- Backfilling: conservative

Results(16 cores)

(a) 16 cores

Results(8 cores)

Time

(b) 8 cores

Final Results

Table 3. Completion Time and Resource Contention metric for 16 and 8 cores

Configuration	Time	Resource Contention
cloudeatimeconsolidation	2689207	365667584
cloudeaconsolidation	2694286	372760333
cloudgreedy	2663556	455026120
hpceatimeconsolidation	3058147	201649827
hpceaconsolidation	3019506	170207159
hpcgreedy	2681813	441726388

(a) 16 cores

Configuration	Time	Resource Contention
cloudeatimeconsolidation	2681514	128798324
cloudeaconsolidation	2682099	114294790
cloudgreedy	2663556	125467388
hpceatimeconsolidation	2833329	54352992
hpceaconsolidation	2840499	60079428
hpcgreedy	2672287	129578192

(b) 8 cores

Conclusions

- greedy vs. energy aware policies: Almost in all cases energy aware policies outperform greedy policies
- SimpleEAConsolidation vs. EAConsolidationOverJobTimeHorizon: there is no clear outperformance of the one over the other
- cloud vs. HPC: In spite of the fact that cloud scheduling is more precise than HPC; surprisingly we observe that HPC results are much better than cloud's. This result is the same as in-depth research on the impact of inaccurate estimates on pure scheduling metrics

